{"title":"Spin Effects in Optimizing Electrochemical Applications","authors":"Cunyuan Gao, and , Bin Cai*, ","doi":"10.1021/acsmaterialsau.4c0009210.1021/acsmaterialsau.4c00092","DOIUrl":null,"url":null,"abstract":"<p >Efficient electrocatalyst development is crucial for addressing global energy challenges, and recent advances have highlighted the significant role of electron spin─a fundamental property of electrons─in influencing catalytic processes. Regulating the spin states of active sites has emerged as a powerful strategy to enhance catalytic performance. In response to growing interest in spin-induced electrocatalysis, this review offers a comprehensive examination of the impact of spin states on electrocatalytic activity. We explore various strategies for modulating spin states, review state-of-the-art techniques for spin state characterization, and elucidate the mechanisms by which spin effects enhance catalytic efficiency. Additionally, we discuss future research directions, emphasizing the potential of spin regulation to drive innovation in electrocatalyst design and application. This review aims to provide a foundational understanding of spin effects in electrocatalysis, guiding future efforts in the rational design of high-performance catalysts.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"253–267 253–267"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient electrocatalyst development is crucial for addressing global energy challenges, and recent advances have highlighted the significant role of electron spin─a fundamental property of electrons─in influencing catalytic processes. Regulating the spin states of active sites has emerged as a powerful strategy to enhance catalytic performance. In response to growing interest in spin-induced electrocatalysis, this review offers a comprehensive examination of the impact of spin states on electrocatalytic activity. We explore various strategies for modulating spin states, review state-of-the-art techniques for spin state characterization, and elucidate the mechanisms by which spin effects enhance catalytic efficiency. Additionally, we discuss future research directions, emphasizing the potential of spin regulation to drive innovation in electrocatalyst design and application. This review aims to provide a foundational understanding of spin effects in electrocatalysis, guiding future efforts in the rational design of high-performance catalysts.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications