Target and Suspect Screening Reveal PFAS Exceeding European Union Guideline in Various Water Sources South of Lyon, France

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Termeh Teymoorian, Louis Delon, Gabriel Munoz and Sébastien Sauvé*, 
{"title":"Target and Suspect Screening Reveal PFAS Exceeding European Union Guideline in Various Water Sources South of Lyon, France","authors":"Termeh Teymoorian,&nbsp;Louis Delon,&nbsp;Gabriel Munoz and Sébastien Sauvé*,&nbsp;","doi":"10.1021/acs.estlett.4c0112610.1021/acs.estlett.4c01126","DOIUrl":null,"url":null,"abstract":"<p >Lyon, a major hub for chemical industries in France, has been identified as a contamination hotspot of per- and polyfluoroalkyl substances (PFAS). Major chemical companies in the Pierre-Bénite area have used PFAS in the production of fluoropolymers and fluorotelomers, with effluents discharged into the Rhône River. This together with other contamination sources, such as firefighting foam use at a vicinal harbor oil depot, likely resulted in a complex PFAS signature. This study investigated PFAS contamination in various water sources in southern Lyon, including ponds, rivers, factory channels, wells, springs, and tap water. Out of 47 samples, 22 had a Σ<sub>77</sub>PFAS above 100 ng/L (maximum: ∼700 ng/L), and 67% of the tap water samples exceeded the European guideline of 100 ng/L for Σ<sub>20</sub>PFAS. Target PFAS profiles were dominated by perfluoroalkyl carboxylates (particularly C4 to C8), in agreement with their historical or current industrial usage. Suspect screening also revealed the occurrence of electrochemical fluorination precursors such as N-sulfopropyldimethylammoniopropyl perfluorohexanesulfonamido acetic acid (N-SPAmP-FHxSAA) and bistriflimide (used in the composition of ionic liquids). Certain fluorotelomers, including ESI+ (e.g., 6:2 fluorotelomer sulfonamidopropyl betaine (6:2 FTAB)) and ESI- (e.g., 6:2 FTS, 6:2 FTSAS-sulfone) compounds, were more prevalent in surface water than in tap or groundwater.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 3","pages":"327–333 327–333"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c01126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c01126","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lyon, a major hub for chemical industries in France, has been identified as a contamination hotspot of per- and polyfluoroalkyl substances (PFAS). Major chemical companies in the Pierre-Bénite area have used PFAS in the production of fluoropolymers and fluorotelomers, with effluents discharged into the Rhône River. This together with other contamination sources, such as firefighting foam use at a vicinal harbor oil depot, likely resulted in a complex PFAS signature. This study investigated PFAS contamination in various water sources in southern Lyon, including ponds, rivers, factory channels, wells, springs, and tap water. Out of 47 samples, 22 had a Σ77PFAS above 100 ng/L (maximum: ∼700 ng/L), and 67% of the tap water samples exceeded the European guideline of 100 ng/L for Σ20PFAS. Target PFAS profiles were dominated by perfluoroalkyl carboxylates (particularly C4 to C8), in agreement with their historical or current industrial usage. Suspect screening also revealed the occurrence of electrochemical fluorination precursors such as N-sulfopropyldimethylammoniopropyl perfluorohexanesulfonamido acetic acid (N-SPAmP-FHxSAA) and bistriflimide (used in the composition of ionic liquids). Certain fluorotelomers, including ESI+ (e.g., 6:2 fluorotelomer sulfonamidopropyl betaine (6:2 FTAB)) and ESI- (e.g., 6:2 FTS, 6:2 FTSAS-sulfone) compounds, were more prevalent in surface water than in tap or groundwater.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信