Termeh Teymoorian, Louis Delon, Gabriel Munoz and Sébastien Sauvé*,
{"title":"Target and Suspect Screening Reveal PFAS Exceeding European Union Guideline in Various Water Sources South of Lyon, France","authors":"Termeh Teymoorian, Louis Delon, Gabriel Munoz and Sébastien Sauvé*, ","doi":"10.1021/acs.estlett.4c0112610.1021/acs.estlett.4c01126","DOIUrl":null,"url":null,"abstract":"<p >Lyon, a major hub for chemical industries in France, has been identified as a contamination hotspot of per- and polyfluoroalkyl substances (PFAS). Major chemical companies in the Pierre-Bénite area have used PFAS in the production of fluoropolymers and fluorotelomers, with effluents discharged into the Rhône River. This together with other contamination sources, such as firefighting foam use at a vicinal harbor oil depot, likely resulted in a complex PFAS signature. This study investigated PFAS contamination in various water sources in southern Lyon, including ponds, rivers, factory channels, wells, springs, and tap water. Out of 47 samples, 22 had a Σ<sub>77</sub>PFAS above 100 ng/L (maximum: ∼700 ng/L), and 67% of the tap water samples exceeded the European guideline of 100 ng/L for Σ<sub>20</sub>PFAS. Target PFAS profiles were dominated by perfluoroalkyl carboxylates (particularly C4 to C8), in agreement with their historical or current industrial usage. Suspect screening also revealed the occurrence of electrochemical fluorination precursors such as N-sulfopropyldimethylammoniopropyl perfluorohexanesulfonamido acetic acid (N-SPAmP-FHxSAA) and bistriflimide (used in the composition of ionic liquids). Certain fluorotelomers, including ESI+ (e.g., 6:2 fluorotelomer sulfonamidopropyl betaine (6:2 FTAB)) and ESI- (e.g., 6:2 FTS, 6:2 FTSAS-sulfone) compounds, were more prevalent in surface water than in tap or groundwater.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 3","pages":"327–333 327–333"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c01126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c01126","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lyon, a major hub for chemical industries in France, has been identified as a contamination hotspot of per- and polyfluoroalkyl substances (PFAS). Major chemical companies in the Pierre-Bénite area have used PFAS in the production of fluoropolymers and fluorotelomers, with effluents discharged into the Rhône River. This together with other contamination sources, such as firefighting foam use at a vicinal harbor oil depot, likely resulted in a complex PFAS signature. This study investigated PFAS contamination in various water sources in southern Lyon, including ponds, rivers, factory channels, wells, springs, and tap water. Out of 47 samples, 22 had a Σ77PFAS above 100 ng/L (maximum: ∼700 ng/L), and 67% of the tap water samples exceeded the European guideline of 100 ng/L for Σ20PFAS. Target PFAS profiles were dominated by perfluoroalkyl carboxylates (particularly C4 to C8), in agreement with their historical or current industrial usage. Suspect screening also revealed the occurrence of electrochemical fluorination precursors such as N-sulfopropyldimethylammoniopropyl perfluorohexanesulfonamido acetic acid (N-SPAmP-FHxSAA) and bistriflimide (used in the composition of ionic liquids). Certain fluorotelomers, including ESI+ (e.g., 6:2 fluorotelomer sulfonamidopropyl betaine (6:2 FTAB)) and ESI- (e.g., 6:2 FTS, 6:2 FTSAS-sulfone) compounds, were more prevalent in surface water than in tap or groundwater.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.