In Silico Functional Annotation and Structural Characterization of Hypothetical Proteins in Bacillus paralicheniformis and Bacillus subtilis Isolated from Honey

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ahmer Bin Hafeez*, Subrahmanyam Sappati*, Radoslaw Krzemieniecki, Randy Worobo and Piotr Szweda, 
{"title":"In Silico Functional Annotation and Structural Characterization of Hypothetical Proteins in Bacillus paralicheniformis and Bacillus subtilis Isolated from Honey","authors":"Ahmer Bin Hafeez*,&nbsp;Subrahmanyam Sappati*,&nbsp;Radoslaw Krzemieniecki,&nbsp;Randy Worobo and Piotr Szweda,&nbsp;","doi":"10.1021/acsomega.4c0710510.1021/acsomega.4c07105","DOIUrl":null,"url":null,"abstract":"<p ><i>Bacillus</i> species are ubiquitous and survive in competitive microbial communities under adverse environmental conditions. <i>Bacillus paralicheniformis</i> and <i>Bacillus subtilis</i> obtained from honey revealed a significant proportion of proteins within their genomes as uncharacterized hypothetical proteins (HPs). A total of 1007 HP sequences were evaluated, resulting in the successful annotation of 56 HPs by assigning specific functions to them. A systematic <i>in silico</i> approach, integrating a range of bioinformatics tools and databases to annotate functions, characterize physicochemical properties, determine subcellular localization, and study protein–protein interactions, was used. Homology and <i>de novo</i> models were generated for the HPs, coupled with iterative remodeling and molecular dynamics (MD) simulations. HPs having significant roles in sporulation, biofilm formation, motility, ion transportation, regulation of metabolic processes, DNA repair, replication, and transcription were identified. Classical MD simulations of globular and transducer membrane proteins, along with postprocessing analyses, refined our structural predictions and provided deeper insights into the stability and functional dynamics of the protein structures under physiological conditions. Moreover, we observed a correlation between the percentage of α helix, β sheet, and coil structures in globular proteins and transducer membrane proteins. The integration of iterative loop modeling, MD simulations, and Dictionary of Secondary Structure in Proteins analysis further validated our predicted models and facilitated the identification of regions critical for protein function, thereby enhancing the overall reliability and robustness of our functional annotations. Furthermore, annotation of these hypothetical proteins aids in identifying novel proteins within bacterial cells, ultimately contributing to a deeper understanding of bacterial cell biology and their use for biotechnological purposes.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 9","pages":"8993–9006 8993–9006"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07105","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus species are ubiquitous and survive in competitive microbial communities under adverse environmental conditions. Bacillus paralicheniformis and Bacillus subtilis obtained from honey revealed a significant proportion of proteins within their genomes as uncharacterized hypothetical proteins (HPs). A total of 1007 HP sequences were evaluated, resulting in the successful annotation of 56 HPs by assigning specific functions to them. A systematic in silico approach, integrating a range of bioinformatics tools and databases to annotate functions, characterize physicochemical properties, determine subcellular localization, and study protein–protein interactions, was used. Homology and de novo models were generated for the HPs, coupled with iterative remodeling and molecular dynamics (MD) simulations. HPs having significant roles in sporulation, biofilm formation, motility, ion transportation, regulation of metabolic processes, DNA repair, replication, and transcription were identified. Classical MD simulations of globular and transducer membrane proteins, along with postprocessing analyses, refined our structural predictions and provided deeper insights into the stability and functional dynamics of the protein structures under physiological conditions. Moreover, we observed a correlation between the percentage of α helix, β sheet, and coil structures in globular proteins and transducer membrane proteins. The integration of iterative loop modeling, MD simulations, and Dictionary of Secondary Structure in Proteins analysis further validated our predicted models and facilitated the identification of regions critical for protein function, thereby enhancing the overall reliability and robustness of our functional annotations. Furthermore, annotation of these hypothetical proteins aids in identifying novel proteins within bacterial cells, ultimately contributing to a deeper understanding of bacterial cell biology and their use for biotechnological purposes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信