Amplification-free, OR-gated CRISPR-Cascade reaction for pathogen detection in blood samples

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jongwon Lim, An Bao Van, Katherine Koprowski, Matthew Wester, Enrique Valera, Rashid Bashir
{"title":"Amplification-free, OR-gated CRISPR-Cascade reaction for pathogen detection in blood samples","authors":"Jongwon Lim, An Bao Van, Katherine Koprowski, Matthew Wester, Enrique Valera, Rashid Bashir","doi":"10.1073/pnas.2420166122","DOIUrl":null,"url":null,"abstract":"Rapid and accurate detection of DNA from disease-causing pathogens is essential for controlling the spread of infections and administering timely treatments. While traditional molecular diagnostics techniques like PCR are highly sensitive, they include nucleic acid amplification and many need to be performed in centralized laboratories, limiting their utility in point-of-care settings. Recent advances in CRISPR-based diagnostics (CRISPR-Dx) have demonstrated the potential for highly specific molecular detection, but the sensitivity is often constrained by the slow trans-cleavage activity of Cas enzymes, necessitating preamplification of target nucleic acids. In this study, we present a CRISPR-Cascade assay that overcomes these limitations by integrating a positive feedback loop that enables nucleic acid amplification-free detection of pathogenic DNA at atto-molar levels and achieves a signal-to-noise ratio greater than 1.3 within just 10 min. The versatility of the assay is demonstrated through the detection of bloodstream infection pathogens, including Methicillin-Sensitive <jats:italic>Staphylococcus aureus</jats:italic> (MSSA), Methicillin-Resistant <jats:italic>Staphylococcus aureus</jats:italic> (MRSA), <jats:italic>Escherichia coli</jats:italic> , and Hepatitis B Virus (HBV) spiked in whole blood samples. Additionally, we introduce a multiplexing OR-function logic gate, further enhancing the potential of the CRISPR-Cascade assay for rapid and accurate diagnostics in clinical settings. Our findings highlight the ability of the CRISPR-Cascade assay to provide highly sensitive and specific molecular detection, paving the way for advanced applications in point-of-care diagnostics and beyond.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"33 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2420166122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid and accurate detection of DNA from disease-causing pathogens is essential for controlling the spread of infections and administering timely treatments. While traditional molecular diagnostics techniques like PCR are highly sensitive, they include nucleic acid amplification and many need to be performed in centralized laboratories, limiting their utility in point-of-care settings. Recent advances in CRISPR-based diagnostics (CRISPR-Dx) have demonstrated the potential for highly specific molecular detection, but the sensitivity is often constrained by the slow trans-cleavage activity of Cas enzymes, necessitating preamplification of target nucleic acids. In this study, we present a CRISPR-Cascade assay that overcomes these limitations by integrating a positive feedback loop that enables nucleic acid amplification-free detection of pathogenic DNA at atto-molar levels and achieves a signal-to-noise ratio greater than 1.3 within just 10 min. The versatility of the assay is demonstrated through the detection of bloodstream infection pathogens, including Methicillin-Sensitive Staphylococcus aureus (MSSA), Methicillin-Resistant Staphylococcus aureus (MRSA), Escherichia coli , and Hepatitis B Virus (HBV) spiked in whole blood samples. Additionally, we introduce a multiplexing OR-function logic gate, further enhancing the potential of the CRISPR-Cascade assay for rapid and accurate diagnostics in clinical settings. Our findings highlight the ability of the CRISPR-Cascade assay to provide highly sensitive and specific molecular detection, paving the way for advanced applications in point-of-care diagnostics and beyond.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信