Earth-Abundant W18O49 Coupled with Minimal Pt for Enhanced Hydrogen Evolution under Dark and Visible Light Conditions

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hugo L. S. Santos, Md Mofakkharulhashan, Shiqi Wang, Eric V. Formo, Mykhailo Chundak, Mikko Ritala, Wenyi Huo, Pedro H. C. Camargo
{"title":"Earth-Abundant W18O49 Coupled with Minimal Pt for Enhanced Hydrogen Evolution under Dark and Visible Light Conditions","authors":"Hugo L. S. Santos, Md Mofakkharulhashan, Shiqi Wang, Eric V. Formo, Mykhailo Chundak, Mikko Ritala, Wenyi Huo, Pedro H. C. Camargo","doi":"10.1021/acsami.4c22952","DOIUrl":null,"url":null,"abstract":"The development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER) is critical to advancing green hydrogen production technologies. Here, we present a plasmonic tungsten oxide (W<sub>18</sub>O<sub>49</sub>) material integrated with ultralow platinum (Pt) loadings (0.4, 0.8, and 1.6 wt %) that delivers high HER performances under both dark and visible light conditions. The 0.4 wt % Pt–W<sub>18</sub>O<sub>49</sub> catalyst exhibits remarkable mass activity, outperforming commercial Pt/C by factors of 15 and 30 under dark and 740 nm LED illumination, respectively. Density functional theory (DFT) calculations reveal that the synergy between Pt and plasmonically active W<sub>18</sub>O<sub>49</sub> optimizes charge transfer and hydrogen adsorption, resulting in lowered energy barriers for HER kinetics. Furthermore, plasmonic excitation of W<sub>18</sub>O<sub>49</sub> enhances catalytic activity by facilitating electron transfer. This work introduces a scalable, cost-effective strategy for combining earth-abundant plasmonic materials with minimal Pt usage, providing a pathway toward high-efficiency HER catalysts. These findings highlight the potential of plasmonic-catalyst integration in green hydrogen technologies.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"31 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22952","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER) is critical to advancing green hydrogen production technologies. Here, we present a plasmonic tungsten oxide (W18O49) material integrated with ultralow platinum (Pt) loadings (0.4, 0.8, and 1.6 wt %) that delivers high HER performances under both dark and visible light conditions. The 0.4 wt % Pt–W18O49 catalyst exhibits remarkable mass activity, outperforming commercial Pt/C by factors of 15 and 30 under dark and 740 nm LED illumination, respectively. Density functional theory (DFT) calculations reveal that the synergy between Pt and plasmonically active W18O49 optimizes charge transfer and hydrogen adsorption, resulting in lowered energy barriers for HER kinetics. Furthermore, plasmonic excitation of W18O49 enhances catalytic activity by facilitating electron transfer. This work introduces a scalable, cost-effective strategy for combining earth-abundant plasmonic materials with minimal Pt usage, providing a pathway toward high-efficiency HER catalysts. These findings highlight the potential of plasmonic-catalyst integration in green hydrogen technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信