{"title":"Nanoscale Spatially Resolved Terahertz Response of a PbS-Graphene Heterostructure","authors":"Fucheng Qiu, Shuanglong Feng, Zhongbo Yang, Chan Yang, Ligang Chen, Min Hu, Hua Li, Yunchang Guo, Zhen Tian, Jiaguang Han, Zhiming Huang, Qihua Xiong, Huabin Wang","doi":"10.1021/acsnano.4c16185","DOIUrl":null,"url":null,"abstract":"Heterostructures have promising applications in photonics and optoelectronics, mainly due to their high electron mobility and broadband photoresponse covering visible, infrared, and terahertz (THz) ranges. However, it is challenging to detect heterostructures in high definition with conventional THz techniques. Here we demonstrate a THz nanoscopic imaging method which is capable of resolving the local THz response of PbS-graphene heterostructures based upon a sophisticated THz near-field optical microscope. The interaction between the THz near field and the heterostructure is further explored by numerical simulations. The results reveal that both the composition and structure of the layers composing the heterostructure contribute to the THz signal. Furthermore, we develop a reliably finite dipole model suitable for retrieving THz optoelectronic properties of multilayered systems from measured THz hyperspectra, and realize mapping the local effective permittivity and conductivity of the heterostructure. Our work discloses the mechanism of the THz response of heterostructures, and provides a useful method for high-definition quantifying complex THz materials and devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"40 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16185","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterostructures have promising applications in photonics and optoelectronics, mainly due to their high electron mobility and broadband photoresponse covering visible, infrared, and terahertz (THz) ranges. However, it is challenging to detect heterostructures in high definition with conventional THz techniques. Here we demonstrate a THz nanoscopic imaging method which is capable of resolving the local THz response of PbS-graphene heterostructures based upon a sophisticated THz near-field optical microscope. The interaction between the THz near field and the heterostructure is further explored by numerical simulations. The results reveal that both the composition and structure of the layers composing the heterostructure contribute to the THz signal. Furthermore, we develop a reliably finite dipole model suitable for retrieving THz optoelectronic properties of multilayered systems from measured THz hyperspectra, and realize mapping the local effective permittivity and conductivity of the heterostructure. Our work discloses the mechanism of the THz response of heterostructures, and provides a useful method for high-definition quantifying complex THz materials and devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.