Martina Huber, Patricia Sonnenberg, Stefan Naumann
{"title":"Polymer-Templated Films of Ordered Mesoporous Carbon: Preparation, Characterization and Applications","authors":"Martina Huber, Patricia Sonnenberg, Stefan Naumann","doi":"10.1039/d5py00107b","DOIUrl":null,"url":null,"abstract":"Ordered mesoporous carbons (OMCs), typically prepared as fine powders, provide a striking combination of beneficial properties which can be considered as crucial for many current and future technological applications. These properties, which include light weight, high surface areas, tunable pore sizes and pore arrangements, variable surface chemistry and electric conductivity, can be further boosted if more complex OMC morphologies are realized. Perhaps most rewarding in this regard are film-like structures, either as defined layers on specific surfaces or even as self-supporting, free-standing films/membranes. Such materials are of high relevance, yet their synthesis and characterization is also significantly more demanding than powder formation. As a consequence, this research field is only just emerging and the number of publications describing self-supporting and well-defined OMC film structures is still rather limited. The presented mini-review thus aims to highlight this exciting type of material in a compact manner, focusing on aspects of synthesis, characterization and application, with the overall aim of encouraging further research efforts. Such efforts are particularly dependent on the polymer community, as the realization of well-defined OMC properties very much depends on polymers (e.g., as templates) and polymerization processes (e.g., cross-linking of carbon precursors). The translation of well-defined template block copolymers into well-defined OMC properties (especially pore size and pore geometry/connectivity) is an ongoing research focus, which is highly important for film morphologies.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"14 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00107b","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ordered mesoporous carbons (OMCs), typically prepared as fine powders, provide a striking combination of beneficial properties which can be considered as crucial for many current and future technological applications. These properties, which include light weight, high surface areas, tunable pore sizes and pore arrangements, variable surface chemistry and electric conductivity, can be further boosted if more complex OMC morphologies are realized. Perhaps most rewarding in this regard are film-like structures, either as defined layers on specific surfaces or even as self-supporting, free-standing films/membranes. Such materials are of high relevance, yet their synthesis and characterization is also significantly more demanding than powder formation. As a consequence, this research field is only just emerging and the number of publications describing self-supporting and well-defined OMC film structures is still rather limited. The presented mini-review thus aims to highlight this exciting type of material in a compact manner, focusing on aspects of synthesis, characterization and application, with the overall aim of encouraging further research efforts. Such efforts are particularly dependent on the polymer community, as the realization of well-defined OMC properties very much depends on polymers (e.g., as templates) and polymerization processes (e.g., cross-linking of carbon precursors). The translation of well-defined template block copolymers into well-defined OMC properties (especially pore size and pore geometry/connectivity) is an ongoing research focus, which is highly important for film morphologies.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.