{"title":"Machine Learning-Assisted Exploration of Chemical Space of MOF-5 Analogues for Enhanced C2H6/C2H4 Separation","authors":"Ying Wang, Zhi-Jie Jiang, Weigang Lu, Dan Li","doi":"10.1002/anie.202500783","DOIUrl":null,"url":null,"abstract":"Adsorptive separation using C2H6-selective adsorbents can produce high-purity C2H4 directly, making it an energy-efficient separation method with the potential to replace cryogenic distillation. While many C2H6-selective MOFs have been reported, developing MOFs with both large C2H6 adsorption capacity and high C2H6/C2H4 selectivity remains challenging. Herein, we present a machine learning-assisted molecular simulation strategy to explore the C2H6/C2H4 separation capability of pcu-MOFs isoreticular to MOF-5. The eXtreme Gradient Boosting (XGBoost) algorithm showed high accuracy in predicting the C2H6/C2H4 selectivity and C2H6 uptake, where Henry coefficient ratio (S0) and Henry coefficient of C2H6 (K(C2H6)) were identified as key factors. We further synthesized the top-performing MOF termed A-66 and experimentally verified its large C2H6 adsorption capacity and excellent C2H6/C2H4 separation performance. This work provides a valuable strategy for exploring the chemical space of MOF-5 analogues and identifying promising candidates for the efficient purification of C2H4 from C2H6/C2H4 mixtures.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"40 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500783","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adsorptive separation using C2H6-selective adsorbents can produce high-purity C2H4 directly, making it an energy-efficient separation method with the potential to replace cryogenic distillation. While many C2H6-selective MOFs have been reported, developing MOFs with both large C2H6 adsorption capacity and high C2H6/C2H4 selectivity remains challenging. Herein, we present a machine learning-assisted molecular simulation strategy to explore the C2H6/C2H4 separation capability of pcu-MOFs isoreticular to MOF-5. The eXtreme Gradient Boosting (XGBoost) algorithm showed high accuracy in predicting the C2H6/C2H4 selectivity and C2H6 uptake, where Henry coefficient ratio (S0) and Henry coefficient of C2H6 (K(C2H6)) were identified as key factors. We further synthesized the top-performing MOF termed A-66 and experimentally verified its large C2H6 adsorption capacity and excellent C2H6/C2H4 separation performance. This work provides a valuable strategy for exploring the chemical space of MOF-5 analogues and identifying promising candidates for the efficient purification of C2H4 from C2H6/C2H4 mixtures.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.