Lumbini P. Ramasinghe, Uriel Joseph Erasquin, Yinan Huang, David Miller, Monica Burdick, Katherine Leslee Asetre Cimatu
{"title":"Influence of Surface Chemistry and Nanomechanical Properties of Methacrylate-Based Copolymer Thin Films on Keratocyte Cell Adhesion","authors":"Lumbini P. Ramasinghe, Uriel Joseph Erasquin, Yinan Huang, David Miller, Monica Burdick, Katherine Leslee Asetre Cimatu","doi":"10.1021/acsami.4c21538","DOIUrl":null,"url":null,"abstract":"Keratoprosthesis is an alternative treatment for visual impairment caused by corneal diseases. However, due to the recognized postoperative complications in available Kpros, there is an exigency to explore potential alternative skirt materials for corneal implants. This study aims to investigate the suitability of poly(2-methoxyethyl methacrylate-<i>co</i>-2-hydroxyethyl methacrylate) (15% MEMA: 85% HEMA), and poly(2-phenoxyethyl methacrylate-<i>co</i>-2-hydroxyethyl methacrylate) (15% PhEMA: 85% HEMA) copolymers as a corneal implant material by evaluating their ability to adhere human keratocytes. The effect of chemical and mechanical properties of copolymers on the keratocyte cell adhesion was investigated. These copolymers are thermally stable with a glass transition temperature between 75 and 80 °C, and thermogravimetric analysis showed that the copolymers do not degrade until 190 °C. Sum frequency generation spectroscopy (SFG) and atomic force microscopy (AFM) were employed to evaluate the surface chemical and mechanical properties of the polymer thin films. SFG spectra showed the contributions of methylene (CH<sub>2</sub>) and α-methyl (α-CH<sub>3</sub>) functional groups at the air/polymer interface. Moreover, the signature vibrational modes of methoxy (−OCH<sub>3</sub>) and phenoxy (−OPh) groups were detected at the 15% MEMA: 85% HEMA and 15% PhEMA: 85% HEMA copolymer surfaces that contribute to chemical composition surface analysis. Meanwhile, the analysis of the AFM topographical images showed that the 15% MEMA: 85% HEMA copolymer is relatively rougher with a root-mean-square value of 56 nm but was found to be more elastic than the 15% PhEMA: 85% HEMA copolymer with a Young’s modulus value of 0.39 GPa. Fluorescence microscopy images showed visible F-actin filaments on stiffer substrates, demonstrating the ability to regulate cell adhesion and migration behavior based on the nanomechanical characteristics of implants. The results show that substrate stiffness can regulate keratocyte cell adhesion as keratocytes preferred to adhere on a stiffer 15% PhEMA: 85% HEMA copolymer surface than the 15% MEMA: 85% HEMA copolymer surface.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"87 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21538","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Keratoprosthesis is an alternative treatment for visual impairment caused by corneal diseases. However, due to the recognized postoperative complications in available Kpros, there is an exigency to explore potential alternative skirt materials for corneal implants. This study aims to investigate the suitability of poly(2-methoxyethyl methacrylate-co-2-hydroxyethyl methacrylate) (15% MEMA: 85% HEMA), and poly(2-phenoxyethyl methacrylate-co-2-hydroxyethyl methacrylate) (15% PhEMA: 85% HEMA) copolymers as a corneal implant material by evaluating their ability to adhere human keratocytes. The effect of chemical and mechanical properties of copolymers on the keratocyte cell adhesion was investigated. These copolymers are thermally stable with a glass transition temperature between 75 and 80 °C, and thermogravimetric analysis showed that the copolymers do not degrade until 190 °C. Sum frequency generation spectroscopy (SFG) and atomic force microscopy (AFM) were employed to evaluate the surface chemical and mechanical properties of the polymer thin films. SFG spectra showed the contributions of methylene (CH2) and α-methyl (α-CH3) functional groups at the air/polymer interface. Moreover, the signature vibrational modes of methoxy (−OCH3) and phenoxy (−OPh) groups were detected at the 15% MEMA: 85% HEMA and 15% PhEMA: 85% HEMA copolymer surfaces that contribute to chemical composition surface analysis. Meanwhile, the analysis of the AFM topographical images showed that the 15% MEMA: 85% HEMA copolymer is relatively rougher with a root-mean-square value of 56 nm but was found to be more elastic than the 15% PhEMA: 85% HEMA copolymer with a Young’s modulus value of 0.39 GPa. Fluorescence microscopy images showed visible F-actin filaments on stiffer substrates, demonstrating the ability to regulate cell adhesion and migration behavior based on the nanomechanical characteristics of implants. The results show that substrate stiffness can regulate keratocyte cell adhesion as keratocytes preferred to adhere on a stiffer 15% PhEMA: 85% HEMA copolymer surface than the 15% MEMA: 85% HEMA copolymer surface.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.