Enhancing mechanical properties of refractory multi-principal element alloys via compositionally complex carbides

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
YaoZu Shen, ZhengQi Wang, XianZhen Wang, XiaoBin Zhang, Yuan Wu, JinWei Zhu, YuChen Zhao, Wei Liu, XiongJun Liu, Hui Wang, SuiHe Jiang, ZhaoPing Lu
{"title":"Enhancing mechanical properties of refractory multi-principal element alloys via compositionally complex carbides","authors":"YaoZu Shen, ZhengQi Wang, XianZhen Wang, XiaoBin Zhang, Yuan Wu, JinWei Zhu, YuChen Zhao, Wei Liu, XiongJun Liu, Hui Wang, SuiHe Jiang, ZhaoPing Lu","doi":"10.1016/j.jmst.2025.03.001","DOIUrl":null,"url":null,"abstract":"Advanced structural materials with superb mechanical properties at ultrahigh temperatures are essential for aerospace and power-generation sectors. Refractory multi-principal element alloys (RMPEAs) are promising candidates, but they face challenges such as limited plasticity at room temperatures and insufficient strength at ultrahigh temperatures. In this work, we investigated the mechanical properties and microstructures of RMPEA reinforced with compositional complex carbides and demonstrated that tailoring the carbon content can significantly alter their microstructures and enhance mechanical properties. Specifically, the W<sub>30</sub>Ta<sub>30</sub>Mo<sub>15</sub>Nb<sub>15</sub>C<sub>10</sub> alloy achieved an ultrahigh strength of 896 MPa at 1600°C and a plasticity of ∼8% at room temperatures. The strengthening effect arises from multi-principal element mixing and robust dislocation hindering at the phase interfaces between the carbides and the matrix, while the room temperature plasticity is attributed to crack buffering facilitated by the highly saturated solid solution matrix. Our study highlights the potential of compositional complex carbide to enhance the mechanical properties of RMPEAs, offering a promising approach for the development of advanced structural materials for ultrahigh temperature applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"54 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.03.001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced structural materials with superb mechanical properties at ultrahigh temperatures are essential for aerospace and power-generation sectors. Refractory multi-principal element alloys (RMPEAs) are promising candidates, but they face challenges such as limited plasticity at room temperatures and insufficient strength at ultrahigh temperatures. In this work, we investigated the mechanical properties and microstructures of RMPEA reinforced with compositional complex carbides and demonstrated that tailoring the carbon content can significantly alter their microstructures and enhance mechanical properties. Specifically, the W30Ta30Mo15Nb15C10 alloy achieved an ultrahigh strength of 896 MPa at 1600°C and a plasticity of ∼8% at room temperatures. The strengthening effect arises from multi-principal element mixing and robust dislocation hindering at the phase interfaces between the carbides and the matrix, while the room temperature plasticity is attributed to crack buffering facilitated by the highly saturated solid solution matrix. Our study highlights the potential of compositional complex carbide to enhance the mechanical properties of RMPEAs, offering a promising approach for the development of advanced structural materials for ultrahigh temperature applications.

Abstract Image

在超高温条件下具有优异机械性能的先进结构材料对于航空航天和发电行业至关重要。难熔多主元素合金 (RMPEA) 是很有前途的候选材料,但它们面临着室温下塑性有限和超高温下强度不足等挑战。在这项工作中,我们研究了用成分复杂的碳化物增强的 RMPEA 的机械性能和微观结构,并证明调整碳含量可以显著改变其微观结构并提高机械性能。具体而言,W30Ta30Mo15Nb15C10合金在1600°C时达到了896兆帕的超高强度,室温下的塑性为8%。强化效果源于碳化物和基体之间相界面的多主元混合和强力位错阻碍,而室温塑性则归因于高饱和固溶体基体对裂纹的缓冲作用。我们的研究凸显了成分复杂的碳化物增强 RMPEAs 机械性能的潜力,为开发超高温应用的先进结构材料提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信