Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Ganesh Kumar, Subham Preetam, Arunima Pandey, Nick Birbilis, Saad Al-Saadi, Pooria Pasbakhsh, Mikhail Zheludkevich, Poovarasi Balan
{"title":"Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects","authors":"Ganesh Kumar, Subham Preetam, Arunima Pandey, Nick Birbilis, Saad Al-Saadi, Pooria Pasbakhsh, Mikhail Zheludkevich, Poovarasi Balan","doi":"10.1016/j.jma.2025.01.025","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy; offering temporary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term complications. However, challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption. This review highlights the latest breakthroughs in surface modification, alloying, and coating strategies to enhance the mechanical integrity, corrosion resistance, and biocompatibility of Mg-based stents. Key surface engineering techniques, including polymer and bioactive coatings, are examined for their role in promoting endothelial healing and minimising inflammatory responses. Future directions are proposed, focusing on personalised stent designs to optimize efficacy and long-term outcomes, positioning Mg-based stents as a transformative solution in interventional cardiology.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium (Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy; offering temporary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term complications. However, challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption. This review highlights the latest breakthroughs in surface modification, alloying, and coating strategies to enhance the mechanical integrity, corrosion resistance, and biocompatibility of Mg-based stents. Key surface engineering techniques, including polymer and bioactive coatings, are examined for their role in promoting endothelial healing and minimising inflammatory responses. Future directions are proposed, focusing on personalised stent designs to optimize efficacy and long-term outcomes, positioning Mg-based stents as a transformative solution in interventional cardiology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信