Environmental gravitational decoherence with a higher derivative theory

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Linda M. van Manen
{"title":"Environmental gravitational decoherence with a higher derivative theory","authors":"Linda M. van Manen","doi":"10.1103/physrevd.111.064035","DOIUrl":null,"url":null,"abstract":"We discuss the decoherence in a quantum system induced by interaction with gravitational degrees of freedom that are part of a higher derivative theory. The deformation of a mass distribution due to gravitational waves acquires naturally a mass quadrupole moment. This adds higher derivative dynamics of the quadrupole moment to the unitary evolution of the system, where the quadrupole moment oscillates with the gravitational frequencies following a higher derivative theory. The consequence of higher derivatives in the dynamics is that four canonical variables describe the system. This departure from the usual particle position and momentum operators gives an entirely different interpretation of the decoherence basis. This model focuses on the open dynamics of the quadrupole moment, rather than on individual particles. As such, a short example is given to utilize quadrupole measurements to probe gravitational decoherence and noise. We first derive a Langevin equation for a lower derivative model and show how higher derivatives naturally emerge on the boundary. A quantum master equation is derived for the emerging quadrupole moment, considering that the environment is a higher derivative theory of gravity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"23 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.064035","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the decoherence in a quantum system induced by interaction with gravitational degrees of freedom that are part of a higher derivative theory. The deformation of a mass distribution due to gravitational waves acquires naturally a mass quadrupole moment. This adds higher derivative dynamics of the quadrupole moment to the unitary evolution of the system, where the quadrupole moment oscillates with the gravitational frequencies following a higher derivative theory. The consequence of higher derivatives in the dynamics is that four canonical variables describe the system. This departure from the usual particle position and momentum operators gives an entirely different interpretation of the decoherence basis. This model focuses on the open dynamics of the quadrupole moment, rather than on individual particles. As such, a short example is given to utilize quadrupole measurements to probe gravitational decoherence and noise. We first derive a Langevin equation for a lower derivative model and show how higher derivatives naturally emerge on the boundary. A quantum master equation is derived for the emerging quadrupole moment, considering that the environment is a higher derivative theory of gravity. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信