Unraveling the Roles of the ZnO Surface Structure and Second Metal Doping in Tuning the Catalytic Performance of Ethane Dehydrogenation

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Lixing Zhang, Bingying Han, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang
{"title":"Unraveling the Roles of the ZnO Surface Structure and Second Metal Doping in Tuning the Catalytic Performance of Ethane Dehydrogenation","authors":"Lixing Zhang, Bingying Han, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang","doi":"10.1021/acscatal.4c08002","DOIUrl":null,"url":null,"abstract":"The ZnO surface is easily reduced during alkane dehydrogenation owing to the formation of surface hydrogen species, resulting in poor catalytic performance. Aiming at revealing ZnO surface structure evolution, the degree of surface reduction, catalyst stability, and the type of key species contributing to surface reduction in the ethane dehydrogenation (EDH) reaction, this work fully investigated the mechanism of the EDH reaction over ZnO and a series of ZnO-based catalysts by using DFT calculations and kMC simulations. The results show that ZnO surface reduction is mainly caused by the interaction of surface H* species from EDH with surface lattice oxygen to generate H<sub>2</sub>O(g), leading to surface oxygen vacancy (O<sub>v</sub>) formation over ZnO. As the EDH reaction proceeds, the number of O<sub>v</sub> increases, and the active center gradually shifts from the Zn–O site to the Zn–Zn<sub>cus</sub> site, decreasing the C<sub>2</sub>H<sub>4</sub>(g) formation activity and ultimately deactivating the ZnO catalyst. Furthermore, the second metal M is introduced into the ZnO surface to construct M/ZnO catalysts, and the Mn/ZnO catalyst is screened out to present better catalytic performance, which is not easily reduced. This work is of great significance in laying a solid foundation for optimizing the catalytic performance of the EDH reaction over ZnO-based catalysts.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"40 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c08002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ZnO surface is easily reduced during alkane dehydrogenation owing to the formation of surface hydrogen species, resulting in poor catalytic performance. Aiming at revealing ZnO surface structure evolution, the degree of surface reduction, catalyst stability, and the type of key species contributing to surface reduction in the ethane dehydrogenation (EDH) reaction, this work fully investigated the mechanism of the EDH reaction over ZnO and a series of ZnO-based catalysts by using DFT calculations and kMC simulations. The results show that ZnO surface reduction is mainly caused by the interaction of surface H* species from EDH with surface lattice oxygen to generate H2O(g), leading to surface oxygen vacancy (Ov) formation over ZnO. As the EDH reaction proceeds, the number of Ov increases, and the active center gradually shifts from the Zn–O site to the Zn–Zncus site, decreasing the C2H4(g) formation activity and ultimately deactivating the ZnO catalyst. Furthermore, the second metal M is introduced into the ZnO surface to construct M/ZnO catalysts, and the Mn/ZnO catalyst is screened out to present better catalytic performance, which is not easily reduced. This work is of great significance in laying a solid foundation for optimizing the catalytic performance of the EDH reaction over ZnO-based catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信