Discovery of Potential Leonurine-Based Therapeutic Lead MJ210 Attenuates Parkinson's Disease Pathogenesis via NF-κB and MAPK Pathways: Mechanistic Insights from In Vitro and In Vivo Rotenone Models
Sanju Gupta, Moumita Jash, Juhee Khan, Shubham Garg, Rajsekhar Roy, Mohammad Umar Arshi, Prasunpriya Nayak, Surajit Ghosh
{"title":"Discovery of Potential Leonurine-Based Therapeutic Lead MJ210 Attenuates Parkinson's Disease Pathogenesis via NF-κB and MAPK Pathways: Mechanistic Insights from In Vitro and In Vivo Rotenone Models","authors":"Sanju Gupta, Moumita Jash, Juhee Khan, Shubham Garg, Rajsekhar Roy, Mohammad Umar Arshi, Prasunpriya Nayak, Surajit Ghosh","doi":"10.1016/j.ejmech.2025.117471","DOIUrl":null,"url":null,"abstract":"Parkinson's disease (PD) is a common neurodegenerative disease affecting motor and non-motor functions, with no effective treatment yet discovered. Neuroprotective compounds, both natural and synthetic, show promise but face challenges such as crossing the blood-brain barrier, limited serum stability, and higher toxicity. To tackle these obstacles, we have devised an innovative design strategy inspired by the neuroprotective properties of Leonurine, widely utilized in managing neurological disorders. Through rigorous screening of our compound library, we have identified a potent therapeutic molecule (MJ210) that exhibited remarkable efficacy in bolstering neuroprotection against rotenone-induced PD models, both <em>in vitro</em> and <em>in vivo</em>. Our findings revealed that administering MJ210 significantly increased neuronal survival in the SH-SY5Y model of PD. This was achieved by preventing apoptosis, reducing reactive oxygen species, mitigating mitochondrial dysfunction, and dampening neuroinflammation via ERK1/2-P38-JNK and P65-NFκB signaling pathways. In addition, MJ210 demonstrated remarkable neuroprotective abilities in vivo by significantly enhancing dopamine biosynthesis, alleviating motor dysfunction, improving balance and coordination, and reversing depression in rotenone-induced PD rats, even outperforming L-DOPA, the current gold standard treatment for PD. Therefore, MJ210 emerges as a significantly promising therapeutic candidate for PD, offering the potential for managing both the severity and progression of this disease.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"30 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117471","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease affecting motor and non-motor functions, with no effective treatment yet discovered. Neuroprotective compounds, both natural and synthetic, show promise but face challenges such as crossing the blood-brain barrier, limited serum stability, and higher toxicity. To tackle these obstacles, we have devised an innovative design strategy inspired by the neuroprotective properties of Leonurine, widely utilized in managing neurological disorders. Through rigorous screening of our compound library, we have identified a potent therapeutic molecule (MJ210) that exhibited remarkable efficacy in bolstering neuroprotection against rotenone-induced PD models, both in vitro and in vivo. Our findings revealed that administering MJ210 significantly increased neuronal survival in the SH-SY5Y model of PD. This was achieved by preventing apoptosis, reducing reactive oxygen species, mitigating mitochondrial dysfunction, and dampening neuroinflammation via ERK1/2-P38-JNK and P65-NFκB signaling pathways. In addition, MJ210 demonstrated remarkable neuroprotective abilities in vivo by significantly enhancing dopamine biosynthesis, alleviating motor dysfunction, improving balance and coordination, and reversing depression in rotenone-induced PD rats, even outperforming L-DOPA, the current gold standard treatment for PD. Therefore, MJ210 emerges as a significantly promising therapeutic candidate for PD, offering the potential for managing both the severity and progression of this disease.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.