Collective Charge Excitations Studied by Electron Energy-Loss Spectroscopy

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
Peter Abbamonte, Jörg Fink
{"title":"Collective Charge Excitations Studied by Electron Energy-Loss Spectroscopy","authors":"Peter Abbamonte, Jörg Fink","doi":"10.1146/annurev-conmatphys-032822-044125","DOIUrl":null,"url":null,"abstract":"The dynamic charge susceptibility, χ(<jats:italic>q</jats:italic>, ω), is a fundamental observable of all materials, in one, two, and three dimensions, quantifying the collective charge modes and the ability of a material to screen charge, as well as its electronic compressibility. Here, we review the current state of efforts to measure the charge susceptibility of quantum materials using inelastic electron scattering, which historically has been called electron energy-loss spectroscopy (EELS). We focus on comparison between transmission (T-EELS) and reflection (R-EELS) geometries as applied to a selection of three-dimensional and quasi-two-dimensional conductors. Although a great deal is understood about simple metals, measurements of more strongly interacting and strange metals are currently conflicting, with different groups obtaining fundamentally contradictory results, emphasizing the importance of improved EELS measurements. Furthermore, current opportunities for improvement in EELS techniques are vast, with the most promising future development being in hemispherical and time-of-flight analyzers, as well as scanning transmission electron microscope instruments configured for high-momentum resolution. We conclude that, despite more than half a century of work, EELS techniques are currently still in their infancy.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"14 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-032822-044125","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic charge susceptibility, χ(q, ω), is a fundamental observable of all materials, in one, two, and three dimensions, quantifying the collective charge modes and the ability of a material to screen charge, as well as its electronic compressibility. Here, we review the current state of efforts to measure the charge susceptibility of quantum materials using inelastic electron scattering, which historically has been called electron energy-loss spectroscopy (EELS). We focus on comparison between transmission (T-EELS) and reflection (R-EELS) geometries as applied to a selection of three-dimensional and quasi-two-dimensional conductors. Although a great deal is understood about simple metals, measurements of more strongly interacting and strange metals are currently conflicting, with different groups obtaining fundamentally contradictory results, emphasizing the importance of improved EELS measurements. Furthermore, current opportunities for improvement in EELS techniques are vast, with the most promising future development being in hemispherical and time-of-flight analyzers, as well as scanning transmission electron microscope instruments configured for high-momentum resolution. We conclude that, despite more than half a century of work, EELS techniques are currently still in their infancy.
通过电子能量损失光谱研究集体电荷激发
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信