A versatile mouse model to advance human microglia transplantation research in neurodegenerative diseases

IF 14.9 1区 医学 Q1 NEUROSCIENCES
Lutgarde Serneels, Annerieke Sierksma, Emanuela Pasciuto, Ivana Geric, Arya Nair, Anna Martinez-Muriana, An Snellinx, Bart De Strooper
{"title":"A versatile mouse model to advance human microglia transplantation research in neurodegenerative diseases","authors":"Lutgarde Serneels, Annerieke Sierksma, Emanuela Pasciuto, Ivana Geric, Arya Nair, Anna Martinez-Muriana, An Snellinx, Bart De Strooper","doi":"10.1186/s13024-025-00823-2","DOIUrl":null,"url":null,"abstract":"Recent studies highlight the critical role of microglia in neurodegenerative disorders, and emphasize the need for humanized models to accurately study microglial responses. Human-mouse microglia xenotransplantation models are a valuable platform for functional studies and for testing therapeutic approaches, yet currently those models are only available for academic research. This hampers their implementation for the development and testing of medication that targets human microglia. We developed the hCSF1Bdes mouse line, which is suitable as a new transplantation model and available to be crossed to any disease model of interest. The hCSF1Bdes model created by CRISPR gene editing is RAG2 deficient and expresses human CSF1. Additionally, we crossed this model with two humanized App KI mice, the AppHu and the AppSAA. Flow cytometry, immunohistochemistry and bulk sequencing was used to study the response of microglia in the context of Alzheimer’s disease. Our results demonstrate the successful transplantation of iPSC-derived human microglia into the brains of hCSF1Bdes mice without triggering a NK-driven immune response. Furthermore, we confirmed the multipronged response of microglia in the context of Alzheimer’s disease. The hCSF1Bdes and the crosses with the Alzheimer’s disease knock-in model AppSAA and the humanized App knock-in control mice, AppHu are deposited with EMMA and fully accessible to the research community. The hCSF1Bdes mouse is available for both non-profit and for-profit organisations, facilitating the use of the xenotransplantation paradigm for human microglia to study complex human disease.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"37 1","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-025-00823-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies highlight the critical role of microglia in neurodegenerative disorders, and emphasize the need for humanized models to accurately study microglial responses. Human-mouse microglia xenotransplantation models are a valuable platform for functional studies and for testing therapeutic approaches, yet currently those models are only available for academic research. This hampers their implementation for the development and testing of medication that targets human microglia. We developed the hCSF1Bdes mouse line, which is suitable as a new transplantation model and available to be crossed to any disease model of interest. The hCSF1Bdes model created by CRISPR gene editing is RAG2 deficient and expresses human CSF1. Additionally, we crossed this model with two humanized App KI mice, the AppHu and the AppSAA. Flow cytometry, immunohistochemistry and bulk sequencing was used to study the response of microglia in the context of Alzheimer’s disease. Our results demonstrate the successful transplantation of iPSC-derived human microglia into the brains of hCSF1Bdes mice without triggering a NK-driven immune response. Furthermore, we confirmed the multipronged response of microglia in the context of Alzheimer’s disease. The hCSF1Bdes and the crosses with the Alzheimer’s disease knock-in model AppSAA and the humanized App knock-in control mice, AppHu are deposited with EMMA and fully accessible to the research community. The hCSF1Bdes mouse is available for both non-profit and for-profit organisations, facilitating the use of the xenotransplantation paradigm for human microglia to study complex human disease.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Neurodegeneration
Molecular Neurodegeneration 医学-神经科学
CiteScore
23.00
自引率
4.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels. Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信