Next generation of porphysomes for improved photodynamic therapy applications

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jana Alhoussein, Khatia Merabishvili, Tiffany Ho, Abdechakour Elkihel, Paul Cressey, Ágota Tóth, Ashley Qian, Mélanie Hery, Juliette Vergnaud, Séverine Domenichini, Florent Di Meo, Juan Chen, Gang Zheng, Ali Makky
{"title":"Next generation of porphysomes for improved photodynamic therapy applications","authors":"Jana Alhoussein, Khatia Merabishvili, Tiffany Ho, Abdechakour Elkihel, Paul Cressey, Ágota Tóth, Ashley Qian, Mélanie Hery, Juliette Vergnaud, Séverine Domenichini, Florent Di Meo, Juan Chen, Gang Zheng, Ali Makky","doi":"10.1016/j.jconrel.2025.113621","DOIUrl":null,"url":null,"abstract":"Porphysomes are a class of liposome-like nanoparticles that have demonstrated efficacy in photothermal therapy (PTT) and photodynamic therapy (PDT) against cancer. These nanoparticles results from the self-assembly of amphiphilic phospholipid-porphyrin (PL-Por) conjugates. Despite their potential, porphysomes exhibit a high photothermal effect and a weak photodynamic activity as long as they remain intact within the body. In this study, we present the design of a novel generation of smart porphysomes capable of undergoing active dissociation and releasing porphyrin moieties upon illumination, thereby enabling tunable photothermal properties with enhanced photodynamic efficiency. These new porphysomes are composed of smart PL-Por conjugates that exhibit one or two ROS-responsive linkers separating the polar head group from the porphyrin moiety. Among the designed molecules, we demonstrated that monosubstituted conjugates bearing either Pyro-a or Pheo-a porphyrinoids with one ROS-responsive bond and shorter linker showed the best performance in terms of stability, photothermal and photodynamic efficiencies in vitro. Moreover, these assemblies were found to achieve complete tumor ablation in 80 % of PC3 prostate subcutaneous tumor-bearing mice after 30 days post-PDT, compared to 0 % using conventional porphysomes. Consequently, our strategy enabled the development of a versatile platform for delivering porphyrin-based photosensitizers for enhanced photodynamic applications.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"8 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2025.113621","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Porphysomes are a class of liposome-like nanoparticles that have demonstrated efficacy in photothermal therapy (PTT) and photodynamic therapy (PDT) against cancer. These nanoparticles results from the self-assembly of amphiphilic phospholipid-porphyrin (PL-Por) conjugates. Despite their potential, porphysomes exhibit a high photothermal effect and a weak photodynamic activity as long as they remain intact within the body. In this study, we present the design of a novel generation of smart porphysomes capable of undergoing active dissociation and releasing porphyrin moieties upon illumination, thereby enabling tunable photothermal properties with enhanced photodynamic efficiency. These new porphysomes are composed of smart PL-Por conjugates that exhibit one or two ROS-responsive linkers separating the polar head group from the porphyrin moiety. Among the designed molecules, we demonstrated that monosubstituted conjugates bearing either Pyro-a or Pheo-a porphyrinoids with one ROS-responsive bond and shorter linker showed the best performance in terms of stability, photothermal and photodynamic efficiencies in vitro. Moreover, these assemblies were found to achieve complete tumor ablation in 80 % of PC3 prostate subcutaneous tumor-bearing mice after 30 days post-PDT, compared to 0 % using conventional porphysomes. Consequently, our strategy enabled the development of a versatile platform for delivering porphyrin-based photosensitizers for enhanced photodynamic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信