Status and Opportunities of Machine Learning Applications in Obstructive Sleep Apnea: A Narrative Review.

Matheus Lima Diniz Araujo, Trevor Winger, Samer Ghosn, Carl Saab, Jaideep Srivastava, Louis Kazaglis, Piyush Mathur, Reena Mehra
{"title":"Status and Opportunities of Machine Learning Applications in Obstructive Sleep Apnea: A Narrative Review.","authors":"Matheus Lima Diniz Araujo, Trevor Winger, Samer Ghosn, Carl Saab, Jaideep Srivastava, Louis Kazaglis, Piyush Mathur, Reena Mehra","doi":"10.1101/2025.02.27.25322950","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obstructive sleep apnea (OSA) is a prevalent and potentially severe sleep disorder characterized by repeated interruptions in breathing during sleep. Machine learning models have been increasingly applied in various aspects of OSA research, including diagnosis, treatment optimization, and developing biomarkers for endotypes and disease mechanisms.</p><p><strong>Objective: </strong>This narrative review evaluates the application of machine learning in OSA research, focusing on model performance, dataset characteristics, demographic representation, and validation strategies. We aim to identify trends and gaps to guide future research and improve clinical decision-making that leverages machine learning.</p><p><strong>Methods: </strong>This narrative review examines data extracted from 254 scientific publications published in the PubMed database between January 2018 and March 2023. Studies were categorized by machine learning applications, models, tasks, validation metrics, data sources, and demographics.</p><p><strong>Results: </strong>Our analysis revealed that most machine learning applications focused on OSA classification and diagnosis, utilizing various data sources such as polysomnography, electrocardiogram data, and wearable devices. We also found that study cohorts were predominantly overweight males, with an underrepresentation of women, younger obese adults, individuals over 60 years old, and diverse racial groups. Many studies had small sample sizes and limited use of robust model validation.</p><p><strong>Conclusion: </strong>Our findings highlight the need for more inclusive research approaches, starting with adequate data collection in terms of sample size and bias mitigation for better generalizability of machine learning models in OSA research. Addressing these demographic gaps and methodological opportunities is critical for ensuring more robust and equitable applications of artificial intelligence in healthcare.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.27.25322950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Obstructive sleep apnea (OSA) is a prevalent and potentially severe sleep disorder characterized by repeated interruptions in breathing during sleep. Machine learning models have been increasingly applied in various aspects of OSA research, including diagnosis, treatment optimization, and developing biomarkers for endotypes and disease mechanisms.

Objective: This narrative review evaluates the application of machine learning in OSA research, focusing on model performance, dataset characteristics, demographic representation, and validation strategies. We aim to identify trends and gaps to guide future research and improve clinical decision-making that leverages machine learning.

Methods: This narrative review examines data extracted from 254 scientific publications published in the PubMed database between January 2018 and March 2023. Studies were categorized by machine learning applications, models, tasks, validation metrics, data sources, and demographics.

Results: Our analysis revealed that most machine learning applications focused on OSA classification and diagnosis, utilizing various data sources such as polysomnography, electrocardiogram data, and wearable devices. We also found that study cohorts were predominantly overweight males, with an underrepresentation of women, younger obese adults, individuals over 60 years old, and diverse racial groups. Many studies had small sample sizes and limited use of robust model validation.

Conclusion: Our findings highlight the need for more inclusive research approaches, starting with adequate data collection in terms of sample size and bias mitigation for better generalizability of machine learning models in OSA research. Addressing these demographic gaps and methodological opportunities is critical for ensuring more robust and equitable applications of artificial intelligence in healthcare.

机器学习在阻塞性睡眠呼吸暂停中的应用现状与机遇:综述。
背景:阻塞性睡眠呼吸暂停(OSA)是一种普遍存在且潜在严重的睡眠障碍,其特征是睡眠中呼吸反复中断。机器学习模型越来越多地应用于OSA研究的各个方面,包括诊断、治疗优化、开发内源性生物标志物和疾病机制。方法:本叙述性综述研究了从2018年至2023年期间发表的254篇科学出版物中提取的数据,涉及从诊断算法到治疗和患者管理策略的广泛研究工作。我们通过评估研究中使用的技术、应用领域、模型评估策略和数据集特征,评估了OSA研究中机器学习的前景。结果:我们的分析显示,大多数机器学习应用集中在OSA分类和诊断上,利用各种数据源,如多导睡眠图、心电图数据和可穿戴设备。深度学习模型是最受欢迎的,其次是支持向量机,分类任务是最常见的。我们还发现,研究队列主要是超重男性,女性、年轻肥胖成年人、60岁以上个体和不同种族群体的代表性不足。许多研究的样本量较小,并且使用的稳健模型验证有限。结论:我们的研究结果强调需要更具包容性的研究方法,从充分的数据收集开始,以便在OSA研究中更好地推广机器学习模型。解决这些人口差距和方法上的机遇,对于确保人工智能在医疗保健领域得到更稳健、更公平的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信