Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders.

Yuan Mei, Maya L Gosztyla, Xinzhu Tan, Lara E Dozier, Brent Wilkinson, Justin McKetney, John Lee, Michael Chen, Dorothy Tsai, Hema Kopalle, Marina A Gritsenko, Nicolas Hartel, Nicholas A Graham, Ilse Flores, Stephen K Gilmore-Hall, Shuhao Xu, Charlotte A Marquez, Sophie N Liu, Dylan Fong, Jing Chen, Kate Licon, Derek Hong, Sarah N Wright, Jason F Kreisberg, Alexi Nott, Richard D Smith, Wei-Jun Qian, Danielle L Swaney, Lilia M Iakoucheva, Nevan J Krogan, Gentry N Patrick, Yang Zhou, Guoping Feng, Marcelo P Coba, Gene W Yeo, Trey Ideker
{"title":"Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders.","authors":"Yuan Mei, Maya L Gosztyla, Xinzhu Tan, Lara E Dozier, Brent Wilkinson, Justin McKetney, John Lee, Michael Chen, Dorothy Tsai, Hema Kopalle, Marina A Gritsenko, Nicolas Hartel, Nicholas A Graham, Ilse Flores, Stephen K Gilmore-Hall, Shuhao Xu, Charlotte A Marquez, Sophie N Liu, Dylan Fong, Jing Chen, Kate Licon, Derek Hong, Sarah N Wright, Jason F Kreisberg, Alexi Nott, Richard D Smith, Wei-Jun Qian, Danielle L Swaney, Lilia M Iakoucheva, Nevan J Krogan, Gentry N Patrick, Yang Zhou, Guoping Feng, Marcelo P Coba, Gene W Yeo, Trey Ideker","doi":"10.1016/j.cels.2025.101204","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101204"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信