Spontaneous bone regeneration achieved through one-step alignment of human mesenchymal stem cell-embedded collagen

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Cheol Ho Heo , Ki Baek Yeo , Minjung Chae , Seon Young Bak , Hyeon Jin Choi , Sohyeon Jeong , Nakwon Choi , Seung-Kyun Kang , Sang Ho Jun , Myoung-Ryul Ok , So Yeon Kim
{"title":"Spontaneous bone regeneration achieved through one-step alignment of human mesenchymal stem cell-embedded collagen","authors":"Cheol Ho Heo ,&nbsp;Ki Baek Yeo ,&nbsp;Minjung Chae ,&nbsp;Seon Young Bak ,&nbsp;Hyeon Jin Choi ,&nbsp;Sohyeon Jeong ,&nbsp;Nakwon Choi ,&nbsp;Seung-Kyun Kang ,&nbsp;Sang Ho Jun ,&nbsp;Myoung-Ryul Ok ,&nbsp;So Yeon Kim","doi":"10.1016/j.actbio.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing cell-matrix interactions for effective bone regeneration remains a significant hurdle in tissue engineering. This study presents a novel approach by developing a human mesenchymal stem cells (hMSCs)-embedded 3D aligned collagen for enhanced bone regeneration. A one-step mechanical strain was applied to a mixture of hMSCs and collagen, producing an hMSC-embedded, aligned 3D collagen hydrogel patch that mimics the natural bone matrix. Notably, the hMSCs embedded in the aligned collagen spontaneously differentiated into osteoblasts without external inducing reagents. Immunofluorescence analysis revealed that the BMP2-smad1/5 signaling pathway, critical for osteogenic differentiation, were activated by aligned collagen. <em>In vivo</em> experiments using a calvarial defect model confirmed that this approach effectively promotes new bone formation, starting centrally within the defect rather than from the edges adjacent to the existing bone. Our findings suggest that this simple method of pre-straining to create aligned 3D collagen embedded with hMSCs holds promise as a novel cell therapy platform for bone regeneration.</div></div><div><h3>Statement of Significance</h3><div>This study introduces a novel method for enhancing bone regeneration by developing a 3D aligned collagen patch embedded with hMSCs. A single mechanical strain applied to the hMSC-collagen mixture produces an aligned collagen matrix that mimics natural bone tissue. Remarkably, the hMSCs spontaneously differentiate into osteoblasts in the absence of exogenous inducing reagents triggered by activation of the bone morphogenetic protein signaling pathway. <em>In vivo</em> studies using a calvarial defect model confirm effective bone regeneration, initiating the new bone generation from the center of the defect. This approach offers a promising and simple cell therapy platform for bone repair, with broad implications for tissue engineering and regenerative medicine.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"196 ","pages":"Pages 136-151"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125001692","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing cell-matrix interactions for effective bone regeneration remains a significant hurdle in tissue engineering. This study presents a novel approach by developing a human mesenchymal stem cells (hMSCs)-embedded 3D aligned collagen for enhanced bone regeneration. A one-step mechanical strain was applied to a mixture of hMSCs and collagen, producing an hMSC-embedded, aligned 3D collagen hydrogel patch that mimics the natural bone matrix. Notably, the hMSCs embedded in the aligned collagen spontaneously differentiated into osteoblasts without external inducing reagents. Immunofluorescence analysis revealed that the BMP2-smad1/5 signaling pathway, critical for osteogenic differentiation, were activated by aligned collagen. In vivo experiments using a calvarial defect model confirmed that this approach effectively promotes new bone formation, starting centrally within the defect rather than from the edges adjacent to the existing bone. Our findings suggest that this simple method of pre-straining to create aligned 3D collagen embedded with hMSCs holds promise as a novel cell therapy platform for bone regeneration.

Statement of Significance

This study introduces a novel method for enhancing bone regeneration by developing a 3D aligned collagen patch embedded with hMSCs. A single mechanical strain applied to the hMSC-collagen mixture produces an aligned collagen matrix that mimics natural bone tissue. Remarkably, the hMSCs spontaneously differentiate into osteoblasts in the absence of exogenous inducing reagents triggered by activation of the bone morphogenetic protein signaling pathway. In vivo studies using a calvarial defect model confirm effective bone regeneration, initiating the new bone generation from the center of the defect. This approach offers a promising and simple cell therapy platform for bone repair, with broad implications for tissue engineering and regenerative medicine.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信