Biomineralize Mitochondria in Metal-Organic Frameworks to Promote Mitochondria Transplantation From Non-Tumorigenic Cells Into Cancer Cells.

Smart medicine Pub Date : 2025-02-26 eCollection Date: 2025-03-01 DOI:10.1002/smmd.134
Jun-Nian Zhou, Chang Liu, Yonghui Wang, Yong Guo, Xiao-Yu Xu, Elina Vuorimaa-Laukkanen, Oliver Koivisto, Anne M Filppula, Jiangbin Ye, Hongbo Zhang
{"title":"Biomineralize Mitochondria in Metal-Organic Frameworks to Promote Mitochondria Transplantation From Non-Tumorigenic Cells Into Cancer Cells.","authors":"Jun-Nian Zhou, Chang Liu, Yonghui Wang, Yong Guo, Xiao-Yu Xu, Elina Vuorimaa-Laukkanen, Oliver Koivisto, Anne M Filppula, Jiangbin Ye, Hongbo Zhang","doi":"10.1002/smmd.134","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are crucial to cellular physiology, and growing evidence highlights the significant impact of mitochondrial dysfunction in diabetes, aging, neurodegenerative disorders, and cancers. Therefore, mitochondrial transplantation shows great potential for therapeutic use in treating these diseases. However, transplantation process is notably challenging due to very low efficiency and rapid loss of bioactivity post-isolation, leading to poor reproducibility and reliability. In this study, we develop a novel strategy to form a nanometer-thick protective shell around isolated mitochondria using Metal-Organic Frameworks (MOFs) through biomineralization. Our findings demonstrate that this encapsulation method effectively maintains mitochondria bioactivity for at least 4 weeks at room temperature. Furthermore, the efficiency of intracellular delivery of mitochondria is significantly enhanced through the surface functionalization of MOFs with polyethyleneimine (PEI) and the cell-penetrating peptide Tat. The successful delivery of mitochondria isolated from non-tumorigenic cells into cancer cells results in notable tumor-suppressive effects. Taken together, our technology represents a significant advancement in mitochondria research, particularly on understanding their role in cancer. It also lays the groundwork for utilizing mitochondria as therapeutic agents in cancer treatment.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":"4 1","pages":"e134"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smmd.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria are crucial to cellular physiology, and growing evidence highlights the significant impact of mitochondrial dysfunction in diabetes, aging, neurodegenerative disorders, and cancers. Therefore, mitochondrial transplantation shows great potential for therapeutic use in treating these diseases. However, transplantation process is notably challenging due to very low efficiency and rapid loss of bioactivity post-isolation, leading to poor reproducibility and reliability. In this study, we develop a novel strategy to form a nanometer-thick protective shell around isolated mitochondria using Metal-Organic Frameworks (MOFs) through biomineralization. Our findings demonstrate that this encapsulation method effectively maintains mitochondria bioactivity for at least 4 weeks at room temperature. Furthermore, the efficiency of intracellular delivery of mitochondria is significantly enhanced through the surface functionalization of MOFs with polyethyleneimine (PEI) and the cell-penetrating peptide Tat. The successful delivery of mitochondria isolated from non-tumorigenic cells into cancer cells results in notable tumor-suppressive effects. Taken together, our technology represents a significant advancement in mitochondria research, particularly on understanding their role in cancer. It also lays the groundwork for utilizing mitochondria as therapeutic agents in cancer treatment.

金属-有机框架中的生物矿化线粒体促进线粒体从非致瘤细胞向癌细胞的移植。
线粒体对细胞生理至关重要,越来越多的证据强调了线粒体功能障碍在糖尿病、衰老、神经退行性疾病和癌症中的重要影响。因此,线粒体移植在治疗这些疾病方面显示出巨大的潜力。然而,由于分离后效率极低且生物活性迅速丧失,导致可重复性和可靠性差,移植过程具有明显的挑战性。在这项研究中,我们开发了一种新的策略,利用金属有机框架(mof)通过生物矿化在分离的线粒体周围形成纳米厚的保护壳。我们的研究结果表明,这种包封方法可以在室温下有效地维持线粒体的生物活性至少4周。此外,通过聚乙烯亚胺(PEI)和细胞穿透肽Tat对mof的表面功能化,线粒体的细胞内递送效率显著提高。从非致瘤性细胞中分离的线粒体成功递送到癌细胞中导致显着的肿瘤抑制作用。总的来说,我们的技术代表了线粒体研究的重大进步,特别是在了解它们在癌症中的作用方面。这也为将线粒体用作癌症治疗剂奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信