[Technical foundations of large language models].

Radiologie (Heidelberg, Germany) Pub Date : 2025-04-01 Epub Date: 2025-03-10 DOI:10.1007/s00117-025-01427-z
Christian Blüthgen
{"title":"[Technical foundations of large language models].","authors":"Christian Blüthgen","doi":"10.1007/s00117-025-01427-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Large language models (LLMs) such as ChatGPT have rapidly revolutionized the way computers can analyze human language and the way we can interact with computers.</p><p><strong>Objective: </strong>To give an overview of the emergence and basic principles of computational language models.</p><p><strong>Methods: </strong>Narrative literature-based analysis of the history of the emergence of language models, the technical foundations, the training process and the limitations of LLMs.</p><p><strong>Results: </strong>Nowadays, LLMs are mostly based on transformer models that can capture context through their attention mechanism. Through a multistage training process with comprehensive pretraining, supervised fine-tuning and alignment with human preferences, LLMs have developed a general understanding of language. This enables them to flexibly analyze texts and produce outputs of high linguistic quality.</p><p><strong>Conclusion: </strong>Their technical foundations and training process make large language models versatile general-purpose tools for text processing, with numerous applications in radiology. The main limitation is the tendency to postulate incorrect but plausible-sounding information with high confidence.</p>","PeriodicalId":74635,"journal":{"name":"Radiologie (Heidelberg, Germany)","volume":" ","pages":"227-234"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00117-025-01427-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Large language models (LLMs) such as ChatGPT have rapidly revolutionized the way computers can analyze human language and the way we can interact with computers.

Objective: To give an overview of the emergence and basic principles of computational language models.

Methods: Narrative literature-based analysis of the history of the emergence of language models, the technical foundations, the training process and the limitations of LLMs.

Results: Nowadays, LLMs are mostly based on transformer models that can capture context through their attention mechanism. Through a multistage training process with comprehensive pretraining, supervised fine-tuning and alignment with human preferences, LLMs have developed a general understanding of language. This enables them to flexibly analyze texts and produce outputs of high linguistic quality.

Conclusion: Their technical foundations and training process make large language models versatile general-purpose tools for text processing, with numerous applications in radiology. The main limitation is the tendency to postulate incorrect but plausible-sounding information with high confidence.

[大型语言模型的技术基础]。
背景:像ChatGPT这样的大型语言模型(llm)已经迅速改变了计算机分析人类语言的方式以及我们与计算机交互的方式。目的:概述计算语言模型的产生及其基本原理。方法:以叙事文献为基础,分析语言模型的产生历史、技术基础、培养过程和法学硕士的局限性。结果:目前,llm主要基于变形模型,通过其注意机制捕获上下文。通过多阶段的训练过程,包括全面的预训练、监督微调和与人类偏好的一致,llm已经对语言有了大致的理解。这使他们能够灵活地分析文本,并产生高质量的语言输出。结论:它们的技术基础和训练过程使大型语言模型成为文本处理的通用工具,在放射学中具有广泛的应用。主要的限制是倾向于假设不正确但听起来可信的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信