NLP-driven integration of electrophysiology and traditional Chinese medicine for enhanced diagnostics and management of postpartum pain

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Yaning Wang
{"title":"NLP-driven integration of electrophysiology and traditional Chinese medicine for enhanced diagnostics and management of postpartum pain","authors":"Yaning Wang","doi":"10.1016/j.slast.2025.100267","DOIUrl":null,"url":null,"abstract":"<div><div>Postpartum pain encompasses a range of physical and emotional discomforts, often influenced by hormonal changes, physical recovery, and individual psychological states. The complex interactions between the variables can make it difficult for traditional diagnostic techniques to fully capture, creating inadequacies and inefficient management techniques. The aims to develop a comprehensive diagnostic and management framework for postpartum pain by integrating Natural Language Processing (NLP), electrophysiological data, and Traditional Chinese Medicine (TCM) principles. The seeks to enhance the accuracy of postpartum pain diagnosis, uncover meaningful correlations between TCM diagnoses and physiological markers, and optimize personalized treatment strategies. The focuses on analyzing textual data from patient-reported symptoms, medical records, and TCM diagnosis notes. Data pre-processing involves text cleaning and tokenization, followed by feature extraction using Term Frequency-Inverse Document Frequency (TF-IDF) to capture meaningful patterns. For diagnostics and management, a Refined Coyote Optimized Deep Recurrent Neural Network (RCO-DRNN) is employed to analyze and predict pain profiles, combining insights from TCM diagnoses with physiological markers. The results highlight the effectiveness of RCO-DRNN in accurately diagnosing pain types and offering personalized and holistic management strategies. This approach represents a significant advancement in integrating data-driven methodologies with traditional medical practices, providing a more comprehensive framework for postpartum pain management. The RCO-DRNN continuously beats the other models after thorough evaluation using metrics like MSE, MAE, and R<sup>2</sup>, obtaining the lowest MSE (0.005), the smallest MAE (0.04), and the highest R<sup>2</sup> (0.98).</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100267"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000251","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Postpartum pain encompasses a range of physical and emotional discomforts, often influenced by hormonal changes, physical recovery, and individual psychological states. The complex interactions between the variables can make it difficult for traditional diagnostic techniques to fully capture, creating inadequacies and inefficient management techniques. The aims to develop a comprehensive diagnostic and management framework for postpartum pain by integrating Natural Language Processing (NLP), electrophysiological data, and Traditional Chinese Medicine (TCM) principles. The seeks to enhance the accuracy of postpartum pain diagnosis, uncover meaningful correlations between TCM diagnoses and physiological markers, and optimize personalized treatment strategies. The focuses on analyzing textual data from patient-reported symptoms, medical records, and TCM diagnosis notes. Data pre-processing involves text cleaning and tokenization, followed by feature extraction using Term Frequency-Inverse Document Frequency (TF-IDF) to capture meaningful patterns. For diagnostics and management, a Refined Coyote Optimized Deep Recurrent Neural Network (RCO-DRNN) is employed to analyze and predict pain profiles, combining insights from TCM diagnoses with physiological markers. The results highlight the effectiveness of RCO-DRNN in accurately diagnosing pain types and offering personalized and holistic management strategies. This approach represents a significant advancement in integrating data-driven methodologies with traditional medical practices, providing a more comprehensive framework for postpartum pain management. The RCO-DRNN continuously beats the other models after thorough evaluation using metrics like MSE, MAE, and R2, obtaining the lowest MSE (0.005), the smallest MAE (0.04), and the highest R2 (0.98).
NLP 驱动的电生理学与传统中医药的整合,用于加强产后疼痛的诊断和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信