Alzheimer's disease prediction using 3D-CNNs: Intelligent processing of neuroimaging data

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Atta Ur Rahman , Sania Ali , Bibi Saqia , Zahid Halim , M.A. Al-Khasawneh , Dina Abdulaziz AlHammadi , Muhammad Zubair Khan , Inam Ullah , Meshal Alharbi
{"title":"Alzheimer's disease prediction using 3D-CNNs: Intelligent processing of neuroimaging data","authors":"Atta Ur Rahman ,&nbsp;Sania Ali ,&nbsp;Bibi Saqia ,&nbsp;Zahid Halim ,&nbsp;M.A. Al-Khasawneh ,&nbsp;Dina Abdulaziz AlHammadi ,&nbsp;Muhammad Zubair Khan ,&nbsp;Inam Ullah ,&nbsp;Meshal Alharbi","doi":"10.1016/j.slast.2025.100265","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is a severe neurological illness that demolishes memory and brain functioning. This disease affects an individual's capacity to work, think, and behave. The proportion of individuals suffering from AD is rapidly increasing. It flatters a leading cause of disability and impacts millions of people worldwide. Early detection reduces disease expansion, provides more effective therapies, and leads to better results. However, predicting AD at an early stage is complex since its clinical symptoms match with normal aging, mild cognitive impairment (MCI), and neurodegenerative disorders. Prior studies indicate that early diagnosis is improved by the utilization of magnetic resonance imaging (MRI). However, MRI data is scarce, noisy, and extremely diverse among scanners and patient populations. The 2D CNNs analyze 3D data slices separately, resulting in a loss of inter-slice information and contextual coherence required to detect subtle and diffuse brain alterations. This study offered a novel 3Dimensional-Convolutional Neural Network (3D-CNN) and intelligent preprocessing pipeline for AD prediction. This work uses an intelligent frame selection and 3D dilated convolutions mechanism to recognize the most informative slices associated with AD disease. This enabled the model to capture subtle and diffuse structural changes across the brain visible in MRI scans. The proposed model examined brain structures by recognizing small volumetric changes associated with AD and acquiring spatial hierarchies within MRI data. After conducting various experiments, we observed that the proposed 3D-CNNs are highly proficient in capturing early brain changes. To validate the model's performance, a benchmark dataset called AD Neuroimaging Initiative (ADNI) is used and achieves a maximum accuracy of 92.89 %, outperforming state-of-the-art approaches.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100265"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000238","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a severe neurological illness that demolishes memory and brain functioning. This disease affects an individual's capacity to work, think, and behave. The proportion of individuals suffering from AD is rapidly increasing. It flatters a leading cause of disability and impacts millions of people worldwide. Early detection reduces disease expansion, provides more effective therapies, and leads to better results. However, predicting AD at an early stage is complex since its clinical symptoms match with normal aging, mild cognitive impairment (MCI), and neurodegenerative disorders. Prior studies indicate that early diagnosis is improved by the utilization of magnetic resonance imaging (MRI). However, MRI data is scarce, noisy, and extremely diverse among scanners and patient populations. The 2D CNNs analyze 3D data slices separately, resulting in a loss of inter-slice information and contextual coherence required to detect subtle and diffuse brain alterations. This study offered a novel 3Dimensional-Convolutional Neural Network (3D-CNN) and intelligent preprocessing pipeline for AD prediction. This work uses an intelligent frame selection and 3D dilated convolutions mechanism to recognize the most informative slices associated with AD disease. This enabled the model to capture subtle and diffuse structural changes across the brain visible in MRI scans. The proposed model examined brain structures by recognizing small volumetric changes associated with AD and acquiring spatial hierarchies within MRI data. After conducting various experiments, we observed that the proposed 3D-CNNs are highly proficient in capturing early brain changes. To validate the model's performance, a benchmark dataset called AD Neuroimaging Initiative (ADNI) is used and achieves a maximum accuracy of 92.89 %, outperforming state-of-the-art approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信