{"title":"Advanced NLP-driven predictive modeling for tailored treatment strategies in gastrointestinal cancer","authors":"Zhaojun Ye , Haibin Ban , Cuihua Li , Sufang Chen","doi":"10.1016/j.slast.2025.100264","DOIUrl":null,"url":null,"abstract":"<div><div>Gastrointestinal cancer represents a significant health burden, necessitating innovative approaches for personalized treatment. This study aims to develop an advanced natural language processing (NLP)-driven predictive modeling framework for tailored treatment strategies in gastrointestinal cancer, leveraging the capabilities of deep learning. The Resilient Adam Algorithm-driven Versatile Long-Short Term Memory (RAA-VLSTM) model is proposed to analyze comprehensive clinical data. The dataset comprises extensive electronic health records (EHRs) from multiple healthcare centers, focusing on patient demographics, clinical history, treatment outcomes, and genetic factors. Data preprocessing employs techniques such as tokenization, normalization, and stop-word removal to ensure effective representation of textual data. For feature extraction, state-of-the-art word embeddings are utilized to enhance model performance. The proposed framework outlines a comprehensive process: data collection from EHRs, preprocessing to prepare the data for analysis, and employing NLP techniques to extract meaningful features. The RAA optimization algorithm significantly improves training efficiency by adapting learning rates for each parameter, addressing common issues in gradient descent. This optimization enhances feature learning from sequential clinical data, enabling accurate predictions of treatment responses and outcomes. The overall performance in terms of F1-score (89.4%), accuracy (92.5%), recall (88.7%), and precision (90.1%). Preliminary results demonstrate the model's strong predictive capabilities, achieving high accuracy in predicting treatment outcomes, thereby suggesting its potential to improve individualized care. In conclusion, this study establishes a robust foundation for employing advanced NLP and machine learning techniques in the management of gastrointestinal cancer, paving the way for future research and clinical applications.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100264"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000226","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrointestinal cancer represents a significant health burden, necessitating innovative approaches for personalized treatment. This study aims to develop an advanced natural language processing (NLP)-driven predictive modeling framework for tailored treatment strategies in gastrointestinal cancer, leveraging the capabilities of deep learning. The Resilient Adam Algorithm-driven Versatile Long-Short Term Memory (RAA-VLSTM) model is proposed to analyze comprehensive clinical data. The dataset comprises extensive electronic health records (EHRs) from multiple healthcare centers, focusing on patient demographics, clinical history, treatment outcomes, and genetic factors. Data preprocessing employs techniques such as tokenization, normalization, and stop-word removal to ensure effective representation of textual data. For feature extraction, state-of-the-art word embeddings are utilized to enhance model performance. The proposed framework outlines a comprehensive process: data collection from EHRs, preprocessing to prepare the data for analysis, and employing NLP techniques to extract meaningful features. The RAA optimization algorithm significantly improves training efficiency by adapting learning rates for each parameter, addressing common issues in gradient descent. This optimization enhances feature learning from sequential clinical data, enabling accurate predictions of treatment responses and outcomes. The overall performance in terms of F1-score (89.4%), accuracy (92.5%), recall (88.7%), and precision (90.1%). Preliminary results demonstrate the model's strong predictive capabilities, achieving high accuracy in predicting treatment outcomes, thereby suggesting its potential to improve individualized care. In conclusion, this study establishes a robust foundation for employing advanced NLP and machine learning techniques in the management of gastrointestinal cancer, paving the way for future research and clinical applications.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.