Novel cell factory for the production of 24-epi-ergosterol, an un-natural semi-synthetic precursor for the production of brassinolide in Yarrowia lipolytica.
IF 4 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuanying Wang, Shuxian Liu, Zeyu Sheng, Yun Feng, Yinmiao Wang, Yiqi Jiang, Li Zhu, Mianbin Wu, Lirong Yang, Jianping Lin
{"title":"Novel cell factory for the production of 24-epi-ergosterol, an un-natural semi-synthetic precursor for the production of brassinolide in Yarrowia lipolytica.","authors":"Yuanying Wang, Shuxian Liu, Zeyu Sheng, Yun Feng, Yinmiao Wang, Yiqi Jiang, Li Zhu, Mianbin Wu, Lirong Yang, Jianping Lin","doi":"10.1007/s11274-025-04314-w","DOIUrl":null,"url":null,"abstract":"<p><p>Brassinolide (BL) is the most bioactive plant growth regulator among Brassinosteroids (BRs), belonging to the sixth class of plant hormones. However, its low natural abundance limits large-scale agricultural applications. An unnatural sterol, 24-epi-ergosterol, was proposed as a semi-synthetic precursor for economic production of BL. Here, we constructed a synthetic pathway for 24-epi-ergosterol in Yarrowia lipolytica, which has abundant acetyl-CoA content and a hydrophobic intracellular environment. Initially, we introduced a mutant plant-derived Δ<sup>24(28)</sup> sterol reductase (Dwf1) into Y. lipolytica to enable 24-epi-ergosterol production. The production of 24-epi-ergosterol was subsequently enhanced by regulating sterol homeostasis, optimizing transcriptional regulators, and overexpressing key pathway genes. Next, the accumulation of 24-epi-ergosterol was further improved by increasing acetyl-CoA levels and adjusting lipid metabolism. Finally, the 24-epi-ergosterol production reached 1626.85 mg/L after optimizing the fermentation conditions and performing a fed-batch culture in a 2 L fermenter. This study represents the first successful de novo synthesis of 24-epi-ergosterol in Y. lipolytica, offering a novel approach for the industrial production of BL.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"98"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04314-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brassinolide (BL) is the most bioactive plant growth regulator among Brassinosteroids (BRs), belonging to the sixth class of plant hormones. However, its low natural abundance limits large-scale agricultural applications. An unnatural sterol, 24-epi-ergosterol, was proposed as a semi-synthetic precursor for economic production of BL. Here, we constructed a synthetic pathway for 24-epi-ergosterol in Yarrowia lipolytica, which has abundant acetyl-CoA content and a hydrophobic intracellular environment. Initially, we introduced a mutant plant-derived Δ24(28) sterol reductase (Dwf1) into Y. lipolytica to enable 24-epi-ergosterol production. The production of 24-epi-ergosterol was subsequently enhanced by regulating sterol homeostasis, optimizing transcriptional regulators, and overexpressing key pathway genes. Next, the accumulation of 24-epi-ergosterol was further improved by increasing acetyl-CoA levels and adjusting lipid metabolism. Finally, the 24-epi-ergosterol production reached 1626.85 mg/L after optimizing the fermentation conditions and performing a fed-batch culture in a 2 L fermenter. This study represents the first successful de novo synthesis of 24-epi-ergosterol in Y. lipolytica, offering a novel approach for the industrial production of BL.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.