Expression of recombination antimicrobial protein PIL22-PBD-2 in Pichia pastoris and verification of its biological function in vitro.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Xian Li, Pengfei Qiu, Menglong Yue, Ying Zhang, Congshang Lei, Jingyu Wang, Xiwen Chen, Xuefeng Qi
{"title":"Expression of recombination antimicrobial protein PIL22-PBD-2 in Pichia pastoris and verification of its biological function in vitro.","authors":"Xian Li, Pengfei Qiu, Menglong Yue, Ying Zhang, Congshang Lei, Jingyu Wang, Xiwen Chen, Xuefeng Qi","doi":"10.1186/s13567-024-01428-1","DOIUrl":null,"url":null,"abstract":"<p><p>Finding suitable alternatives to antibiotics as feed additives is challenging for the livestock industry. Porcine beta-defensin 2 (PBD-2) is an endogenous antimicrobial peptide produced by pigs. Due to its broad-spectrum antibacterial activity against various microorganisms and its low tendency for drug resistance, it is considered a potential substitute for antibiotics. Additionally, given its strong ability to repair intestinal epithelial damage and maintain intestinal mucosal barrier function, porcine interleukin-22 (PIL-22) is a potential feed additive to combat intestinal damage caused by intestinal pathogens in piglets. In this study, the amino acid sequences of PBD-2 and PIL-22 were combined to express the fusion protein in Pichia pastoris, and its biological activity was evaluated in vitro. Our results showed that the PIL22-PBD-2 exhibits broad-spectrum antibacterial activity against multidrug-resistant enterotoxigenic Escherichia coli O8 (ETEC O8), Escherichia coli (E. coli), Salmonella typhimurium, and Staphylococcus aureus (S. aureus). PIL22-PBD-2 demonstrated wound repair capability through a healing assay in the intestinal porcine epithelial cell line-J2 (IPEC-J2). Furthermore, PIL22-PBD-2 significantly enhanced the expression of the major intercellular junction-associated proteins ZO-1 and E-cadherin in IPEC-J2. It is important to note that PIL22-PBD-2 reduced intestinal epithelial cell apoptosis (p < 0.05) considerably and decreased bacterial adhesion (p < 0.05) in ETEC O8-challenged IPEC-J2. We also found that the PIL22-PBD-2 treatment attenuated ETEC O8-induced inflammatory responses in IPEC-J2 by exerting antibacterial activity, increasing the expression of endogenous antimicrobial peptides, and significantly decreasing the mRNA expression levels of IL-6 and TNF-α (p < 0.05). In conclusion, our studies demonstrate that PIL22-PBD-2 has a positive effect on inhibiting pathogenic bacteria and repairing intestinal damage.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"52"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01428-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Finding suitable alternatives to antibiotics as feed additives is challenging for the livestock industry. Porcine beta-defensin 2 (PBD-2) is an endogenous antimicrobial peptide produced by pigs. Due to its broad-spectrum antibacterial activity against various microorganisms and its low tendency for drug resistance, it is considered a potential substitute for antibiotics. Additionally, given its strong ability to repair intestinal epithelial damage and maintain intestinal mucosal barrier function, porcine interleukin-22 (PIL-22) is a potential feed additive to combat intestinal damage caused by intestinal pathogens in piglets. In this study, the amino acid sequences of PBD-2 and PIL-22 were combined to express the fusion protein in Pichia pastoris, and its biological activity was evaluated in vitro. Our results showed that the PIL22-PBD-2 exhibits broad-spectrum antibacterial activity against multidrug-resistant enterotoxigenic Escherichia coli O8 (ETEC O8), Escherichia coli (E. coli), Salmonella typhimurium, and Staphylococcus aureus (S. aureus). PIL22-PBD-2 demonstrated wound repair capability through a healing assay in the intestinal porcine epithelial cell line-J2 (IPEC-J2). Furthermore, PIL22-PBD-2 significantly enhanced the expression of the major intercellular junction-associated proteins ZO-1 and E-cadherin in IPEC-J2. It is important to note that PIL22-PBD-2 reduced intestinal epithelial cell apoptosis (p < 0.05) considerably and decreased bacterial adhesion (p < 0.05) in ETEC O8-challenged IPEC-J2. We also found that the PIL22-PBD-2 treatment attenuated ETEC O8-induced inflammatory responses in IPEC-J2 by exerting antibacterial activity, increasing the expression of endogenous antimicrobial peptides, and significantly decreasing the mRNA expression levels of IL-6 and TNF-α (p < 0.05). In conclusion, our studies demonstrate that PIL22-PBD-2 has a positive effect on inhibiting pathogenic bacteria and repairing intestinal damage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信