{"title":"Extracellular matrix gene set and microRNA network in intestinal ischemia-reperfusion injury: Insights from RNA sequencing for diagnosis and therapy.","authors":"Dao-Jian Xu, Guo-Tao Wang, Qiang Zhong","doi":"10.4240/wjgs.v17.i2.100034","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal ischemia-reperfusion injury (IIRI) is a complex and severe pathophysiological process characterized by oxidative stress, inflammation, and apoptosis. In recent years, the critical roles of extracellular matrix (ECM) genes and microRNAs (miRNAs) in IIRI have garnered widespread attention. This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI. First, we review the molecular mechanisms of IIRI, focusing on the dual role of the ECM in tissue injury and repair processes. The expression changes and functions of ECM components such as collagen, elastin, and matrix metalloproteinases during IIRI progression are deeply analyzed. Second, we systematically summarize the regulatory roles of miRNAs in IIRI, particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation, apoptosis, and ECM remodeling. Additionally, this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs. We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI, emphasizing the clinical translational potential of these emerging therapies. In conclusion, the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research, necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients.</p>","PeriodicalId":23759,"journal":{"name":"World Journal of Gastrointestinal Surgery","volume":"17 2","pages":"100034"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4240/wjgs.v17.i2.100034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal ischemia-reperfusion injury (IIRI) is a complex and severe pathophysiological process characterized by oxidative stress, inflammation, and apoptosis. In recent years, the critical roles of extracellular matrix (ECM) genes and microRNAs (miRNAs) in IIRI have garnered widespread attention. This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI. First, we review the molecular mechanisms of IIRI, focusing on the dual role of the ECM in tissue injury and repair processes. The expression changes and functions of ECM components such as collagen, elastin, and matrix metalloproteinases during IIRI progression are deeply analyzed. Second, we systematically summarize the regulatory roles of miRNAs in IIRI, particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation, apoptosis, and ECM remodeling. Additionally, this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs. We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI, emphasizing the clinical translational potential of these emerging therapies. In conclusion, the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research, necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients.