Emerging roles of the acid sphingomyelinase/ceramide pathway in metabolic and cardiovascular diseases: Mechanistic insights and therapeutic implications.

IF 1.9 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Hong-Ni Wang, Ye Wang, Si-Yao Zhang, Lan Bai
{"title":"Emerging roles of the acid sphingomyelinase/ceramide pathway in metabolic and cardiovascular diseases: Mechanistic insights and therapeutic implications.","authors":"Hong-Ni Wang, Ye Wang, Si-Yao Zhang, Lan Bai","doi":"10.4330/wjc.v17.i2.102308","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic diseases have emerged as a leading cause of mortality from non-communicable diseases, posing a significant global public health challenge. Although the association between ceramides (Cers) and metabolic diseases is well-established, the role of the acid sphingomyelinase (ASMase)/Cer pathway in these diseases remains underexplored. This review synthesizes recent research on the biological functions, regulatory mechanisms, and targeted therapies related to the ASMase/Cer pathway in metabolic conditions, including obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. The effects of the ASMase/Cer pathway on metabolic disease-related indicators, such as glycolipid metabolism, insulin resistance, inflammation, and mitochondrial homeostasis are elucidated. Moreover, this article discusses the therapeutic strategies using ASMase/Cer inhibitors for inverse prevention and treatment of these metabolic diseases in light of the possible efficacy of blockade of the ASMase/Cer pathway in arresting the progression of metabolic diseases. These insights offered herein should provide insight into the contribution of the ASMase/Cer pathway to metabolic diseases and offer tools to develop therapeutic interventions for such pathologies and their severe complications.</p>","PeriodicalId":23800,"journal":{"name":"World Journal of Cardiology","volume":"17 2","pages":"102308"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4330/wjc.v17.i2.102308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic diseases have emerged as a leading cause of mortality from non-communicable diseases, posing a significant global public health challenge. Although the association between ceramides (Cers) and metabolic diseases is well-established, the role of the acid sphingomyelinase (ASMase)/Cer pathway in these diseases remains underexplored. This review synthesizes recent research on the biological functions, regulatory mechanisms, and targeted therapies related to the ASMase/Cer pathway in metabolic conditions, including obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. The effects of the ASMase/Cer pathway on metabolic disease-related indicators, such as glycolipid metabolism, insulin resistance, inflammation, and mitochondrial homeostasis are elucidated. Moreover, this article discusses the therapeutic strategies using ASMase/Cer inhibitors for inverse prevention and treatment of these metabolic diseases in light of the possible efficacy of blockade of the ASMase/Cer pathway in arresting the progression of metabolic diseases. These insights offered herein should provide insight into the contribution of the ASMase/Cer pathway to metabolic diseases and offer tools to develop therapeutic interventions for such pathologies and their severe complications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Cardiology
World Journal of Cardiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.30
自引率
5.30%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信