A quantitative analysis method based on network evolution for risk factors of safety production in chemical enterprises.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ran Tao, Donghong Li, Hongxun Shi, Shibao Pang, Yang Lin, Chuankun Li
{"title":"A quantitative analysis method based on network evolution for risk factors of safety production in chemical enterprises.","authors":"Ran Tao, Donghong Li, Hongxun Shi, Shibao Pang, Yang Lin, Chuankun Li","doi":"10.1038/s41598-025-88279-8","DOIUrl":null,"url":null,"abstract":"<p><p>As petrochemical industry enterprises expand their scale and production capacity, equipment and storage facilities are increasingly automated. But its production safety issues are gradually exposed, including fires, poisonings, and explosions caused by equipment failures or human error. These accidents not only cause severe economic losses and casualties to the industry, but also negatively impact the public interest. Therefore, strengthen risk management and assessment capabilities is urgent. Existing studies analyzing risk factors quantitatively focus on management factors, excluding human and environmental factors. To address this gap, this study proposes a quantitative analysis method that considers multiple factors such as human factors, environment conditions, material and machine conditions and management factors. Firstly, this study constructed a Chemical Enterprise Safety Risk Network (CESRN) based on complex network theory. Subsequently, a method for calculating node risk thresholds and dynamic risk values that considers multiple factors was designed. On this foundation, an accident evolution model for chemical enterprise production safety was established. Then, a quantitative evaluation of the importance of each risk factor was obtained, along with the formulation of specific control measures. Finally, actual accident cases were examined for verification. The results indicated that the proposed method can accurately simulate accidents' evolution and precisely calculate the degree of importance of each risk factor.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8173"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88279-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As petrochemical industry enterprises expand their scale and production capacity, equipment and storage facilities are increasingly automated. But its production safety issues are gradually exposed, including fires, poisonings, and explosions caused by equipment failures or human error. These accidents not only cause severe economic losses and casualties to the industry, but also negatively impact the public interest. Therefore, strengthen risk management and assessment capabilities is urgent. Existing studies analyzing risk factors quantitatively focus on management factors, excluding human and environmental factors. To address this gap, this study proposes a quantitative analysis method that considers multiple factors such as human factors, environment conditions, material and machine conditions and management factors. Firstly, this study constructed a Chemical Enterprise Safety Risk Network (CESRN) based on complex network theory. Subsequently, a method for calculating node risk thresholds and dynamic risk values that considers multiple factors was designed. On this foundation, an accident evolution model for chemical enterprise production safety was established. Then, a quantitative evaluation of the importance of each risk factor was obtained, along with the formulation of specific control measures. Finally, actual accident cases were examined for verification. The results indicated that the proposed method can accurately simulate accidents' evolution and precisely calculate the degree of importance of each risk factor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信