{"title":"Trends in plant tissue culture, production, and secondary metabolites enhancement of medicinal plants: a case study of thyme.","authors":"Aicha Nordine","doi":"10.1007/s00425-025-04655-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Thymus plants are greatly threatened by overharvesting and climate change. Plant cell and tissue culture techniques provide effective alternatives for the production and the enhancement of both biomass and bioactive compounds. Medicinal and aromatic plants are rich sources of various bioactive compounds known as secondary metabolites, which are used across a range of fields, including medicinal, cosmetics, pharmaceuticals, perfumes, agrochemicals and agrofood industries. Thyme is considered one of the most popular herbs globally, valued for its significant medicinal, pharmaceutical, and nutritional benefits. However, its natural habitats are rapidly diminishing due to excessive harvesting and climate change. Consequently, several approaches have been developed to find alternatives to harvesting wild thyme. Plant cell and tissue culture techniques offer a superior alternative to traditional propagation methods, such as seeds, cuttings, or tuft division. These techniques enable the production of large quantities of uniform, disease-free plantlets for commercial cultivation and facilitate the development of new genotypes. Additionally, they support the production and enhancement of bioactive compounds from thyme plants. This review explores the application of plant cell, tissue, and organ culture biotechnology in thyme plants, focusing on enhancing production and improving secondary metabolite yields and biomass production.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 4","pages":"84"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04655-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: Thymus plants are greatly threatened by overharvesting and climate change. Plant cell and tissue culture techniques provide effective alternatives for the production and the enhancement of both biomass and bioactive compounds. Medicinal and aromatic plants are rich sources of various bioactive compounds known as secondary metabolites, which are used across a range of fields, including medicinal, cosmetics, pharmaceuticals, perfumes, agrochemicals and agrofood industries. Thyme is considered one of the most popular herbs globally, valued for its significant medicinal, pharmaceutical, and nutritional benefits. However, its natural habitats are rapidly diminishing due to excessive harvesting and climate change. Consequently, several approaches have been developed to find alternatives to harvesting wild thyme. Plant cell and tissue culture techniques offer a superior alternative to traditional propagation methods, such as seeds, cuttings, or tuft division. These techniques enable the production of large quantities of uniform, disease-free plantlets for commercial cultivation and facilitate the development of new genotypes. Additionally, they support the production and enhancement of bioactive compounds from thyme plants. This review explores the application of plant cell, tissue, and organ culture biotechnology in thyme plants, focusing on enhancing production and improving secondary metabolite yields and biomass production.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.