{"title":"Exploring resistive switching in flexible, forming-free Ti/NiO/AZO/PET memory device for future wearable electronics.","authors":"Adiba Adiba, Ph Nonglen Meitei, Tufail Ahmad","doi":"10.1038/s41598-025-88549-5","DOIUrl":null,"url":null,"abstract":"<p><p>Resistive Random Access Memory (ReRAM) is an emerging class of non-volatile memory that stores data by altering the resistance of a material within a memory cell. Unlike traditional memory technologies, ReRAM operates by using voltage to induce a resistance change in a metal oxide layer, which can then be read as a binary state (0 or 1). In this work, we present a flexible, forming-free, ReRAM device using an aluminium-doped zinc oxide (AZO) electrode and a nickel oxide (NiO) active layer. The fabricated Ti/NiO/AZO/PET device demonstrates reliable bipolar resistive switching (BRS) with two distinct and stable resistance states, crucial for neuromorphic computing. Electrical tests showed stable high and low resistance states with set voltage (V<sub>SET</sub>) ≈ 5.4 V and reset voltage (V<sub>RESET</sub>) ≈ 2.9 V, with endurance over 400 cycles and retention around 10³ seconds. Different conduction mechanisms were observed in high resistance state (HRS) and low resistance state (LRS) like ohmic and space charge limited current (SCLC). Electrical characterization under bending conditions demonstrated the device's performance and reliability, with minimal variation in V<sub>SET</sub> and V<sub>RESET</sub> values. These results highlight the potential of NiO/AZO-based flexible ReRAM for high-density data storage and wearable electronics applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8165"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88549-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Resistive Random Access Memory (ReRAM) is an emerging class of non-volatile memory that stores data by altering the resistance of a material within a memory cell. Unlike traditional memory technologies, ReRAM operates by using voltage to induce a resistance change in a metal oxide layer, which can then be read as a binary state (0 or 1). In this work, we present a flexible, forming-free, ReRAM device using an aluminium-doped zinc oxide (AZO) electrode and a nickel oxide (NiO) active layer. The fabricated Ti/NiO/AZO/PET device demonstrates reliable bipolar resistive switching (BRS) with two distinct and stable resistance states, crucial for neuromorphic computing. Electrical tests showed stable high and low resistance states with set voltage (VSET) ≈ 5.4 V and reset voltage (VRESET) ≈ 2.9 V, with endurance over 400 cycles and retention around 10³ seconds. Different conduction mechanisms were observed in high resistance state (HRS) and low resistance state (LRS) like ohmic and space charge limited current (SCLC). Electrical characterization under bending conditions demonstrated the device's performance and reliability, with minimal variation in VSET and VRESET values. These results highlight the potential of NiO/AZO-based flexible ReRAM for high-density data storage and wearable electronics applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.