{"title":"Nano Drug Delivery Carriers (Nanocarriers): A Promising Targeted Strategy in Tuberculosis and Pain Treatment.","authors":"Rahul Pal, Prachi Pandey, Himmat Singh Chawra, Zuber Khan","doi":"10.2174/0122117385367493250224103839","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tuberculosis (TB) and chronic pain are global health concerns that affect millions of people, often requiring long-term, effective treatment strategies. The conventional therapies used to manage these conditions come with significant limitations. In TB, long treatment durations, poor compliance, drug resistance, and toxicity of first-line drugs are key challenges. Similarly, pain management faces issues, such as inadequate targeting, systemic side effects, and tolerance to analgesics, limiting traditional therapy efficacy.</p><p><strong>Objective: </strong>The objective of this review is to explore the potential of nanocarriers as a targeted drug delivery strategy for improving treatment outcomes in TB and pain management. It aims to explore how these advanced systems improve drug bioavailability (BA), control release, reduce side effects, and enhance therapeutic outcomes.</p><p><strong>Methods: </strong>This systematic review used databases like PubMed, Elsevier, Scopus, Google Scholar, Google Patents, and ResearchGate, etc., to collect original review articles from the past 15 years (September 1, 2007 to September 1, 2024).</p><p><strong>Results: </strong>The review also revealed that these advanced systems offer promising solutions for overcoming the limitations of conventional therapies, such as poor patient compliance and drug toxicity. Nanocarriers represent a transformative approach in both TB and pain management, with the potential to revolutionize treatment paradigms and improve patient outcomes.</p><p><strong>Conclusion: </strong>In conclusion, nanocarriers represent a highly promising approach for advancing treatment strategies in both TB and pain management. The review underscores that nanocarrier systems, such as nanoemulsion, nanosuspension, nanocrystal, liposomes, niosomes, dendrimer, and polymeric nanoparticles, offer substantial improvements in drug delivery by enhancing BA, ensuring targeted release, and reducing systemic side effects.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385367493250224103839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tuberculosis (TB) and chronic pain are global health concerns that affect millions of people, often requiring long-term, effective treatment strategies. The conventional therapies used to manage these conditions come with significant limitations. In TB, long treatment durations, poor compliance, drug resistance, and toxicity of first-line drugs are key challenges. Similarly, pain management faces issues, such as inadequate targeting, systemic side effects, and tolerance to analgesics, limiting traditional therapy efficacy.
Objective: The objective of this review is to explore the potential of nanocarriers as a targeted drug delivery strategy for improving treatment outcomes in TB and pain management. It aims to explore how these advanced systems improve drug bioavailability (BA), control release, reduce side effects, and enhance therapeutic outcomes.
Methods: This systematic review used databases like PubMed, Elsevier, Scopus, Google Scholar, Google Patents, and ResearchGate, etc., to collect original review articles from the past 15 years (September 1, 2007 to September 1, 2024).
Results: The review also revealed that these advanced systems offer promising solutions for overcoming the limitations of conventional therapies, such as poor patient compliance and drug toxicity. Nanocarriers represent a transformative approach in both TB and pain management, with the potential to revolutionize treatment paradigms and improve patient outcomes.
Conclusion: In conclusion, nanocarriers represent a highly promising approach for advancing treatment strategies in both TB and pain management. The review underscores that nanocarrier systems, such as nanoemulsion, nanosuspension, nanocrystal, liposomes, niosomes, dendrimer, and polymeric nanoparticles, offer substantial improvements in drug delivery by enhancing BA, ensuring targeted release, and reducing systemic side effects.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.