The kisspeptin analog C6 reverses reproductive dysfunction in a mouse model of hyperprolactinemia.

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Reproduction Pub Date : 2025-03-17 Print Date: 2025-04-01 DOI:10.1530/REP-25-0036
Chloe Beaudou, Louise Sionneau, Didier Lomet, Vincent Robert, Peggy Jarrier Gaillard, Vincent Aucagne, Hugues Dardente, Massimiliano Beltramo, Vincent Hellier
{"title":"The kisspeptin analog C6 reverses reproductive dysfunction in a mouse model of hyperprolactinemia.","authors":"Chloe Beaudou, Louise Sionneau, Didier Lomet, Vincent Robert, Peggy Jarrier Gaillard, Vincent Aucagne, Hugues Dardente, Massimiliano Beltramo, Vincent Hellier","doi":"10.1530/REP-25-0036","DOIUrl":null,"url":null,"abstract":"<p><strong>In brief: </strong>Kisspeptin has been shown to be tightly associated with hyperprolactinemia. This study shows that similar to kisspeptin, its analog C6 produces a reversal of HPRL estrus cycle and ovulation disruption.</p><p><strong>Abstract: </strong>HPRL, characterized by elevated prolactin levels, disrupts the hypothalamic-pituitary-gonadal axis, leading to reproductive dysfunctions such as menstrual irregularities, anovulation and infertility. Current treatments rely on dopamine agonists but are limited by side effects and resistance. Kisspeptin (Kp), a key neuropeptide regulating the reproductive function, offers potential as an alternative therapy. However, Kp's short half-life requires impractical administration regimens. To address this, we developed a synthetic Kp analog, C6, with enhanced pharmacokinetics. This study evaluated the effects of C6 compared to Kp in a mouse model of HPRL. Mice received subcutaneous PRL injections for 21 days to induce HPRL, followed by daily or alternate-day intraperitoneal administration of Kp10, C6 or vehicle. Estrous cyclicity, luteinizing hormone (LH) secretion, ovarian histology and hypothalamic gene expression were analyzed. As expected, the HPRL treatment blocked estrous activity, which was restored by both Kp10, the shortest bioactive isoform of Kp, and C6. Histological analysis revealed increased corpora lutea in Kp10- and C6-treated groups, indicating restored ovulation. C6 demonstrated equivalent efficacy to Kp10 in mitigating HPRL-induced reproductive dysfunctions, offering a promising alternative therapy. Future investigations should further explore the mechanistic advantages of C6, particularly its role in LH regulation, to optimize treatment strategies for HPRL-related reproductive disorders.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-25-0036","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In brief: Kisspeptin has been shown to be tightly associated with hyperprolactinemia. This study shows that similar to kisspeptin, its analog C6 produces a reversal of HPRL estrus cycle and ovulation disruption.

Abstract: HPRL, characterized by elevated prolactin levels, disrupts the hypothalamic-pituitary-gonadal axis, leading to reproductive dysfunctions such as menstrual irregularities, anovulation and infertility. Current treatments rely on dopamine agonists but are limited by side effects and resistance. Kisspeptin (Kp), a key neuropeptide regulating the reproductive function, offers potential as an alternative therapy. However, Kp's short half-life requires impractical administration regimens. To address this, we developed a synthetic Kp analog, C6, with enhanced pharmacokinetics. This study evaluated the effects of C6 compared to Kp in a mouse model of HPRL. Mice received subcutaneous PRL injections for 21 days to induce HPRL, followed by daily or alternate-day intraperitoneal administration of Kp10, C6 or vehicle. Estrous cyclicity, luteinizing hormone (LH) secretion, ovarian histology and hypothalamic gene expression were analyzed. As expected, the HPRL treatment blocked estrous activity, which was restored by both Kp10, the shortest bioactive isoform of Kp, and C6. Histological analysis revealed increased corpora lutea in Kp10- and C6-treated groups, indicating restored ovulation. C6 demonstrated equivalent efficacy to Kp10 in mitigating HPRL-induced reproductive dysfunctions, offering a promising alternative therapy. Future investigations should further explore the mechanistic advantages of C6, particularly its role in LH regulation, to optimize treatment strategies for HPRL-related reproductive disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信