Calcium-sensing receptors promoted Homer1 expression and osteogenic differentiation in bone marrow mesenchymal stem cells.

IF 1.7 4区 生物学 Q3 BIOLOGY
Open Life Sciences Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.1515/biol-2022-1059
Kainan Liu, Tianjie Xu, Jiaxin Fan, Yueyuan Li, Xiaoling Guo, Hui Zhang, Qian Wang
{"title":"Calcium-sensing receptors promoted Homer1 expression and osteogenic differentiation in bone marrow mesenchymal stem cells.","authors":"Kainan Liu, Tianjie Xu, Jiaxin Fan, Yueyuan Li, Xiaoling Guo, Hui Zhang, Qian Wang","doi":"10.1515/biol-2022-1059","DOIUrl":null,"url":null,"abstract":"<p><p>Homer1 interacts with calcium-sensing receptors (CaSRs) in osteoblasts (OBs), with both CaSR and Homer1 playing essential roles in AKT phosphorylation. This study investigated the impact of CaSR on Homer1 expression during the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) at morphological, imaging, and molecular levels, both <i>in vivo</i> and <i>in vitro</i>. A post-oophorectomy osteoporosis model was established in Sprague-Dawley rats, validated through micro-computed tomography, hematoxylin-eosin staining, and biomechanical testing to assess <i>in vivo</i> changes in CaSR expression. BMSCs were isolated from 3 week-old SD rats for <i>in vitro</i> OB differentiation studies, wherein osteogenic differentiation was induced alongside changes in CaSR expression. Morphological alterations were examined using transmission electron microscopy and immunofluorescence staining. Furthermore, the protein and mRNA levels of OB-specific genes were quantified by Western blot and reverse transcription quantitative real-time polymerase chain reaction, with Homer1-related proteins also assessed. Results showed a reduction in CaSR and Homer1 expression in the ovariectomized group. In cellular studies, CaSR activation upregulated AKT, Homer1, and osteogenic markers, promoting cell differentiation. In conclusion, CaSR enhances OB differentiation, likely via Homer1-mediated regulation of AKT signaling, suggesting CaSR as a potential therapeutic target for osteoporosis.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20221059"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Homer1 interacts with calcium-sensing receptors (CaSRs) in osteoblasts (OBs), with both CaSR and Homer1 playing essential roles in AKT phosphorylation. This study investigated the impact of CaSR on Homer1 expression during the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) at morphological, imaging, and molecular levels, both in vivo and in vitro. A post-oophorectomy osteoporosis model was established in Sprague-Dawley rats, validated through micro-computed tomography, hematoxylin-eosin staining, and biomechanical testing to assess in vivo changes in CaSR expression. BMSCs were isolated from 3 week-old SD rats for in vitro OB differentiation studies, wherein osteogenic differentiation was induced alongside changes in CaSR expression. Morphological alterations were examined using transmission electron microscopy and immunofluorescence staining. Furthermore, the protein and mRNA levels of OB-specific genes were quantified by Western blot and reverse transcription quantitative real-time polymerase chain reaction, with Homer1-related proteins also assessed. Results showed a reduction in CaSR and Homer1 expression in the ovariectomized group. In cellular studies, CaSR activation upregulated AKT, Homer1, and osteogenic markers, promoting cell differentiation. In conclusion, CaSR enhances OB differentiation, likely via Homer1-mediated regulation of AKT signaling, suggesting CaSR as a potential therapeutic target for osteoporosis.

钙敏感受体促进骨髓间充质干细胞Homer1的表达和成骨分化。
Homer1与成骨细胞(OBs)中的钙敏感受体(CaSR)相互作用,CaSR和Homer1都在AKT磷酸化中发挥重要作用。本研究在体内和体外研究了CaSR对大鼠骨髓间充质干细胞(BMSCs)分化过程中Homer1表达的形态学、影像学和分子水平的影响。我们建立了Sprague-Dawley大鼠卵巢切除术后骨质疏松模型,通过显微计算机断层扫描、苏木精-伊红染色和生物力学测试来评估体内CaSR表达的变化。从3周龄SD大鼠中分离BMSCs进行体外OB分化研究,在CaSR表达变化的同时诱导成骨分化。用透射电镜和免疫荧光染色观察形态学改变。此外,通过Western blot和逆转录实时定量聚合酶链反应,定量ob特异性基因的蛋白和mRNA水平,并评估homer1相关蛋白。结果显示,去卵巢组CaSR和Homer1表达降低。在细胞研究中,CaSR激活上调AKT、Homer1和成骨标志物,促进细胞分化。总之,CaSR增强OB分化,可能是通过homer1介导的AKT信号调节,提示CaSR是骨质疏松症的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
4.50%
发文量
131
审稿时长
43 weeks
期刊介绍: Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信