L Vercammen, A Lopez-Moraga, T Beckers, B Vervliet, L Luyten
{"title":"The impact of systemic blockade of dopamine receptors on the acquisition of two-way active avoidance in male rats.","authors":"L Vercammen, A Lopez-Moraga, T Beckers, B Vervliet, L Luyten","doi":"10.1016/j.nlm.2025.108039","DOIUrl":null,"url":null,"abstract":"<p><p>Active threat avoidance is a core aspect of adaptive and maladaptive behavior, yet its underlying mechanisms are not fully understood. Prior studies concluded that pharmacologically blocking dopaminergic receptors (DRs) disrupted avoidance acquisition, but it remains unclear whether such effects on learning persist during a drug-free follow-up test. To assess the involvement of D1R and D2R in avoidance acquisition, we conducted two experiments. In Experiment 1, thirty-six male Wistar rats underwent a single avoidance training session involving 30 tone-shock pairings. Rats could avoid the shock by moving to the opposite compartment of the shuttle box. Twenty minutes before training, rats received either D1R antagonist SCH23390 (0.05 mg/kg), D2R antagonist sulpiride (20 mg/kg), or vehicle. While sulpiride did not affect avoidance, 0.05 mg/kg SCH23390 significantly reduced the number of avoidance responses. In a separate test, 0.05 mg/kg SCH23390 also reduced locomotor activity. In Experiment 2 (N = 24), a lower dose of SCH23390 (0.025 mg/kg) was administered, and a drug-free avoidance test under continued reinforcement was added 24 h later to test for sustained effects of D1R blockade on avoidance in the absence of acute drug effects. Although animals avoided less with SCH23390 in the system, this effect did not persist 24 h later, suggesting that effects of D1R blockade during avoidance training might reflect an acute disruption of secondary processes involved in the performance of avoidance behavior rather than an actual impairment of avoidance learning.</p>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":" ","pages":"108039"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.nlm.2025.108039","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Active threat avoidance is a core aspect of adaptive and maladaptive behavior, yet its underlying mechanisms are not fully understood. Prior studies concluded that pharmacologically blocking dopaminergic receptors (DRs) disrupted avoidance acquisition, but it remains unclear whether such effects on learning persist during a drug-free follow-up test. To assess the involvement of D1R and D2R in avoidance acquisition, we conducted two experiments. In Experiment 1, thirty-six male Wistar rats underwent a single avoidance training session involving 30 tone-shock pairings. Rats could avoid the shock by moving to the opposite compartment of the shuttle box. Twenty minutes before training, rats received either D1R antagonist SCH23390 (0.05 mg/kg), D2R antagonist sulpiride (20 mg/kg), or vehicle. While sulpiride did not affect avoidance, 0.05 mg/kg SCH23390 significantly reduced the number of avoidance responses. In a separate test, 0.05 mg/kg SCH23390 also reduced locomotor activity. In Experiment 2 (N = 24), a lower dose of SCH23390 (0.025 mg/kg) was administered, and a drug-free avoidance test under continued reinforcement was added 24 h later to test for sustained effects of D1R blockade on avoidance in the absence of acute drug effects. Although animals avoided less with SCH23390 in the system, this effect did not persist 24 h later, suggesting that effects of D1R blockade during avoidance training might reflect an acute disruption of secondary processes involved in the performance of avoidance behavior rather than an actual impairment of avoidance learning.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.