Resting-state EEG network variability predicts individual working memory behavior

IF 4.7 2区 医学 Q1 NEUROIMAGING
Chunli Chen , Shiyun Xu , Jixuan Zhou , Chanlin Yi , Liang Yu , Dezhong Yao , Yangsong Zhang , Fali Li , Peng Xu
{"title":"Resting-state EEG network variability predicts individual working memory behavior","authors":"Chunli Chen ,&nbsp;Shiyun Xu ,&nbsp;Jixuan Zhou ,&nbsp;Chanlin Yi ,&nbsp;Liang Yu ,&nbsp;Dezhong Yao ,&nbsp;Yangsong Zhang ,&nbsp;Fali Li ,&nbsp;Peng Xu","doi":"10.1016/j.neuroimage.2025.121120","DOIUrl":null,"url":null,"abstract":"<div><div>Even during periods of rest, the brain exhibits spontaneous activity that dynamically fluctuates across spatially distributed regions in a globally coordinated manner, which has significant cognitive implications. However, the relationship between the temporal variability of resting-state networks and working memory (WM) remains largely unexplored. This study aims to address this gap by employing an EEG-based protocol combined with fuzzy entropy. First, we identified both flexible and robust patterns of dynamic resting-state networks. Subsequently, we observed a significant positive correlation between WM performance and network variability, particularly in connections associated with the frontal, right central, and right parietal lobes. Moreover, we found that the temporal variability of network properties was positively and significantly associated with WM performance. Additionally, distinct patterns of network variability were delineated, contributing to inter-individual differences in WM abilities, with these distinctions becoming more pronounced as task demands increased. Finally, using a multivariable predictive model based on these variability metrics, we effectively predicted individual WM performances. Notably, analogous analyses conducted in the source space validated the reproducibility of the temporal variability of resting-state networks in predicting individual WM behavior at higher spatial resolution, providing more precise anatomical localization of key brain regions. These results suggest that the temporal variability of resting-state networks reflects intrinsic dynamic changes in brain organization supporting WM and can serve as an objective predictor for individual WM behaviors.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121120"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Even during periods of rest, the brain exhibits spontaneous activity that dynamically fluctuates across spatially distributed regions in a globally coordinated manner, which has significant cognitive implications. However, the relationship between the temporal variability of resting-state networks and working memory (WM) remains largely unexplored. This study aims to address this gap by employing an EEG-based protocol combined with fuzzy entropy. First, we identified both flexible and robust patterns of dynamic resting-state networks. Subsequently, we observed a significant positive correlation between WM performance and network variability, particularly in connections associated with the frontal, right central, and right parietal lobes. Moreover, we found that the temporal variability of network properties was positively and significantly associated with WM performance. Additionally, distinct patterns of network variability were delineated, contributing to inter-individual differences in WM abilities, with these distinctions becoming more pronounced as task demands increased. Finally, using a multivariable predictive model based on these variability metrics, we effectively predicted individual WM performances. Notably, analogous analyses conducted in the source space validated the reproducibility of the temporal variability of resting-state networks in predicting individual WM behavior at higher spatial resolution, providing more precise anatomical localization of key brain regions. These results suggest that the temporal variability of resting-state networks reflects intrinsic dynamic changes in brain organization supporting WM and can serve as an objective predictor for individual WM behaviors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信