Production and characterization of a promising microbial-derived lipase enzyme targeting BCL-2 gene expression in hepatocellular carcinoma.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Amal M Abo-Kamer, Ahmed A Abdelaziz, Esraa S Elkotb, Lamiaa A Al-Madboly
{"title":"Production and characterization of a promising microbial-derived lipase enzyme targeting BCL-2 gene expression in hepatocellular carcinoma.","authors":"Amal M Abo-Kamer, Ahmed A Abdelaziz, Esraa S Elkotb, Lamiaa A Al-Madboly","doi":"10.1186/s12934-025-02671-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Context and goal: </strong>This study aimed to isolate and optimize a high-yield lipase-producing Pseudomonas aeruginosa strain from biological samples, enhance enzyme production through random mutagenesis, and evaluate its potential anticancer activity. Fifty-one biological samples (blood, urine, sputum, wound pus) were screened, and three isolates demonstrated significant lipase activity. The isolate with the highest activity, identified as P. aeruginosa (GenBank accession number PP436388), was subjected to ethidium bromide-induced mutagenesis, resulting in a two-fold increase in lipase activity (312 U/ml). Lipase production was optimized using submerged fermentation, with critical factors identified statistically as Tween 80, peptone, and substrate concentration. The enzyme was purified via ammonium sulfate precipitation and Sephadex G-100 chromatography, and its molecular weight (53 kDa) was confirmed by SDS-PAGE.</p><p><strong>Findings: </strong>Optimal conditions for enzyme production included a pH of 9, temperature of 20 °C, and a 24-h incubation period. The partially purified enzyme exhibited high stability at pH values up to 10 and storage temperatures of 4 °C. Anticancer activity was evaluated using the MTT assay, revealing an IC<sub>50</sub> of 78.21 U/ml against human hepatocellular carcinoma using HepG-2 cells, with no cytotoxicity observed against Vero cells. Flow cytometry confirmed that the enzyme's anticancer potential was mediated through apoptosis and necrosis. QRT-PCR data revealed that the expression of the Bcl-2 gene was significantly downregulated by 62% (P < 0.05) following the treatment of HepG-2 cells with the lipase enzyme. These findings suggest that lipase from P. aeruginosa holds promise as a novel therapeutic agent for hepatocellular carcinoma, addressing the limitations of current treatments.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"58"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02671-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context and goal: This study aimed to isolate and optimize a high-yield lipase-producing Pseudomonas aeruginosa strain from biological samples, enhance enzyme production through random mutagenesis, and evaluate its potential anticancer activity. Fifty-one biological samples (blood, urine, sputum, wound pus) were screened, and three isolates demonstrated significant lipase activity. The isolate with the highest activity, identified as P. aeruginosa (GenBank accession number PP436388), was subjected to ethidium bromide-induced mutagenesis, resulting in a two-fold increase in lipase activity (312 U/ml). Lipase production was optimized using submerged fermentation, with critical factors identified statistically as Tween 80, peptone, and substrate concentration. The enzyme was purified via ammonium sulfate precipitation and Sephadex G-100 chromatography, and its molecular weight (53 kDa) was confirmed by SDS-PAGE.

Findings: Optimal conditions for enzyme production included a pH of 9, temperature of 20 °C, and a 24-h incubation period. The partially purified enzyme exhibited high stability at pH values up to 10 and storage temperatures of 4 °C. Anticancer activity was evaluated using the MTT assay, revealing an IC50 of 78.21 U/ml against human hepatocellular carcinoma using HepG-2 cells, with no cytotoxicity observed against Vero cells. Flow cytometry confirmed that the enzyme's anticancer potential was mediated through apoptosis and necrosis. QRT-PCR data revealed that the expression of the Bcl-2 gene was significantly downregulated by 62% (P < 0.05) following the treatment of HepG-2 cells with the lipase enzyme. These findings suggest that lipase from P. aeruginosa holds promise as a novel therapeutic agent for hepatocellular carcinoma, addressing the limitations of current treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信