{"title":"Intranasal Administration of Bivalent RBD Nanoparticles Elicits Strong Systemic Responses That Effectively Block Distal Dissemination of COVID-19.","authors":"Mathurin Seesen, Panya Sunintaboon, Jitra Limthongkul, Yada Janhirun, Hatairat Lerdsamran, Witthawat Wiriyarat, Sukathida Ubol, Tuksin Jearanaiwitayakul","doi":"10.1111/1348-0421.13209","DOIUrl":null,"url":null,"abstract":"<p><p>The intranasal vaccine against coronavirus disease 2019 (COVID-19) has gained more attention because of its ability to induce both mucosal and systemic immune responses. We have recently developed a c-GAMP-adjuvanted bivalent receptor-binding domain (RBD) vaccine, derived from the ancestral strain and the Omicron variant. We demonstrated here that intranasal administration of this vaccine candidate triggers not only the respiratory but also the systemic immune response against SARS-CoV-2. The immunized mice elicited the broadly neutralizing antibodies against the ancestral strain (Wuhan-1) and variants of concern (Delta, Omicron BA.1, and Omicron BA.5). This route of vaccination also induced potent systemic T cell responses with strong cytotoxic activity against both the Wuhan-1 and Omicron BA.1 strains. Additionally, intranasally immunized mice significantly suppressed SARS-CoV-2 RNA levels in circulation and spleens, indicating effective containment of the virus beyond the respiratory tract. These findings suggest that the intranasal bivalent RBD vaccine holds promise for combating SARS-CoV-2 infections.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13209","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intranasal vaccine against coronavirus disease 2019 (COVID-19) has gained more attention because of its ability to induce both mucosal and systemic immune responses. We have recently developed a c-GAMP-adjuvanted bivalent receptor-binding domain (RBD) vaccine, derived from the ancestral strain and the Omicron variant. We demonstrated here that intranasal administration of this vaccine candidate triggers not only the respiratory but also the systemic immune response against SARS-CoV-2. The immunized mice elicited the broadly neutralizing antibodies against the ancestral strain (Wuhan-1) and variants of concern (Delta, Omicron BA.1, and Omicron BA.5). This route of vaccination also induced potent systemic T cell responses with strong cytotoxic activity against both the Wuhan-1 and Omicron BA.1 strains. Additionally, intranasally immunized mice significantly suppressed SARS-CoV-2 RNA levels in circulation and spleens, indicating effective containment of the virus beyond the respiratory tract. These findings suggest that the intranasal bivalent RBD vaccine holds promise for combating SARS-CoV-2 infections.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.