A tip-tilt-piston electrothermal micromirror array with integrated position sensors.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Anrun Ren, Yingtao Ding, Hengzhang Yang, Qiangqiang Liu, Teng Pan, Ziyue Zhang, Huikai Xie
{"title":"A tip-tilt-piston electrothermal micromirror array with integrated position sensors.","authors":"Anrun Ren, Yingtao Ding, Hengzhang Yang, Qiangqiang Liu, Teng Pan, Ziyue Zhang, Huikai Xie","doi":"10.1038/s41378-024-00835-w","DOIUrl":null,"url":null,"abstract":"<p><p>A tip-tilt-piston 3 × 3 electrothermal micromirror array (MMA) integrated with temperature field-based position sensors is designed and fabricated in this work. The size of the individual octagonal mirror plates is as large as 1.6 mm × 1.6 mm. Thermal isolation structures are embedded to reduce the thermal coupling among the micromirror units. Results show that each micromirror unit has a piston scan range of 218 μm and a tip-tilt optical scan angle of 21° at only 5 V<sub>dc</sub>. The micromirrors also exhibit good dynamic performance with a rise time of 51.2 ms and a fall time of 53.6 ms. Moreover, the on-chip position sensors are proven to be capable for covering the full-range movement of the mirror plate, with the measured sensitivities of 1.5 mV/μm and 8.8 mV/° in piston sensing and tip-tilt sensing, respectively. Furthermore, the thermal crosstalk in an operating MMA has been experimentally studied. The measured results are promising thanks to the embedded thermal isolation structures.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"45"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00835-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

A tip-tilt-piston 3 × 3 electrothermal micromirror array (MMA) integrated with temperature field-based position sensors is designed and fabricated in this work. The size of the individual octagonal mirror plates is as large as 1.6 mm × 1.6 mm. Thermal isolation structures are embedded to reduce the thermal coupling among the micromirror units. Results show that each micromirror unit has a piston scan range of 218 μm and a tip-tilt optical scan angle of 21° at only 5 Vdc. The micromirrors also exhibit good dynamic performance with a rise time of 51.2 ms and a fall time of 53.6 ms. Moreover, the on-chip position sensors are proven to be capable for covering the full-range movement of the mirror plate, with the measured sensitivities of 1.5 mV/μm and 8.8 mV/° in piston sensing and tip-tilt sensing, respectively. Furthermore, the thermal crosstalk in an operating MMA has been experimentally studied. The measured results are promising thanks to the embedded thermal isolation structures.

一种集成位置传感器的倾斜活塞式电热微镜阵列。
本文设计并制作了一种集成了基于温度场的位置传感器的3 × 3电热微镜阵列(MMA)。单个八角形镜板的尺寸可达1.6 mm × 1.6 mm。嵌入热隔离结构以减少微镜单元之间的热耦合。结果表明,在5 Vdc下,每个微镜单元的活塞扫描范围为218 μm,倾斜光学扫描角为21°。微镜具有良好的动态性能,上升时间为51.2 ms,下降时间为53.6 ms。此外,片上位置传感器被证明能够覆盖镜板的全范围运动,测量灵敏度分别为1.5 mV/μm和8.8 mV/°的活塞和倾斜传感。在此基础上,对MMA运行过程中的热串扰进行了实验研究。由于嵌入了热隔离结构,测量结果很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信