Multi-stimuli-responsive pectin-coated dendritic mesoporous silica nanoparticles with Eugenol as a sustained release nanocarrier for the control of tomato bacterial wilt.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xueping Guo, Huiyan Li, Zhihao Li, Ziqi Cui, Guangming Ma, Aisha Khalfan Nassor, Yi Guan, Xiaohong Pan
{"title":"Multi-stimuli-responsive pectin-coated dendritic mesoporous silica nanoparticles with Eugenol as a sustained release nanocarrier for the control of tomato bacterial wilt.","authors":"Xueping Guo, Huiyan Li, Zhihao Li, Ziqi Cui, Guangming Ma, Aisha Khalfan Nassor, Yi Guan, Xiaohong Pan","doi":"10.1186/s12951-025-03239-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Environmentally responsive nanoscale biocide delivery system enhances smart, regulated, and synergistic biocide application with precise biocide release. In this study, pectin-modified dendritic mesoporous silica nanoparticles (DMSNs) was used as a carrier to successfully construct a microenvironment-responsive (pH, temperature and enzyme) eugenol nano-biocide delivery system for the control of Ralstonia solanacearum infection.</p><p><strong>Results: </strong>The results showed that the specific surface area, pore size and surface activity of DMSNs significantly influence the biocide loading of eugenol, and the biocide loading capability was up to 72.50%. Eu@DMSNs/Pec had significant pH and pectinase stimulating effects, with varying release amounts under different temperature conditions. Compared with eugenol alone, Eu@DMSNs/Pec significantly enhanced the efficacy of eugenol. DMSNs assisted eugenol to induce peroxidation damage, produce ROS (•O<sub>2</sub><sup>-</sup>, •OH and <sup>1</sup>O<sub>2</sub>), achieve synergistic antibacterial effects, and had better rain erosion resistance and foliar retention rate based on pectin wettability and adhesion. Eu@DMSNs/Pec-FITC showed demonstrated efficient transport characteristics in tomato roots, stems and leaves, which enhanced the control effect on tomato bacterial wilt. In addition, Eu@DMSNs/Pec exert minimal influence on tomato seed germination and root growth, and have low toxicity to non-target organisms such as earthworms. Therefore, Eu@DMSNs/Pec environment-responsive nano-controlled release nanocarrier can effectively achieve accurate biocide release and reduce biocide dosage.</p><p><strong>Conclusion: </strong>This work not only provides a pectin-modified DMSNs-based eugenol nanoscale biocide delivery system in response to specific environmental conditions of R. solanacearum infection but also elucidates the eugenol biocide loading, selective release ability and antibacterial mechanism of the system.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"191"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03239-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Environmentally responsive nanoscale biocide delivery system enhances smart, regulated, and synergistic biocide application with precise biocide release. In this study, pectin-modified dendritic mesoporous silica nanoparticles (DMSNs) was used as a carrier to successfully construct a microenvironment-responsive (pH, temperature and enzyme) eugenol nano-biocide delivery system for the control of Ralstonia solanacearum infection.

Results: The results showed that the specific surface area, pore size and surface activity of DMSNs significantly influence the biocide loading of eugenol, and the biocide loading capability was up to 72.50%. Eu@DMSNs/Pec had significant pH and pectinase stimulating effects, with varying release amounts under different temperature conditions. Compared with eugenol alone, Eu@DMSNs/Pec significantly enhanced the efficacy of eugenol. DMSNs assisted eugenol to induce peroxidation damage, produce ROS (•O2-, •OH and 1O2), achieve synergistic antibacterial effects, and had better rain erosion resistance and foliar retention rate based on pectin wettability and adhesion. Eu@DMSNs/Pec-FITC showed demonstrated efficient transport characteristics in tomato roots, stems and leaves, which enhanced the control effect on tomato bacterial wilt. In addition, Eu@DMSNs/Pec exert minimal influence on tomato seed germination and root growth, and have low toxicity to non-target organisms such as earthworms. Therefore, Eu@DMSNs/Pec environment-responsive nano-controlled release nanocarrier can effectively achieve accurate biocide release and reduce biocide dosage.

Conclusion: This work not only provides a pectin-modified DMSNs-based eugenol nanoscale biocide delivery system in response to specific environmental conditions of R. solanacearum infection but also elucidates the eugenol biocide loading, selective release ability and antibacterial mechanism of the system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信