Multi-stimuli-responsive pectin-coated dendritic mesoporous silica nanoparticles with Eugenol as a sustained release nanocarrier for the control of tomato bacterial wilt.
IF 10.6 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xueping Guo, Huiyan Li, Zhihao Li, Ziqi Cui, Guangming Ma, Aisha Khalfan Nassor, Yi Guan, Xiaohong Pan
{"title":"Multi-stimuli-responsive pectin-coated dendritic mesoporous silica nanoparticles with Eugenol as a sustained release nanocarrier for the control of tomato bacterial wilt.","authors":"Xueping Guo, Huiyan Li, Zhihao Li, Ziqi Cui, Guangming Ma, Aisha Khalfan Nassor, Yi Guan, Xiaohong Pan","doi":"10.1186/s12951-025-03239-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Environmentally responsive nanoscale biocide delivery system enhances smart, regulated, and synergistic biocide application with precise biocide release. In this study, pectin-modified dendritic mesoporous silica nanoparticles (DMSNs) was used as a carrier to successfully construct a microenvironment-responsive (pH, temperature and enzyme) eugenol nano-biocide delivery system for the control of Ralstonia solanacearum infection.</p><p><strong>Results: </strong>The results showed that the specific surface area, pore size and surface activity of DMSNs significantly influence the biocide loading of eugenol, and the biocide loading capability was up to 72.50%. Eu@DMSNs/Pec had significant pH and pectinase stimulating effects, with varying release amounts under different temperature conditions. Compared with eugenol alone, Eu@DMSNs/Pec significantly enhanced the efficacy of eugenol. DMSNs assisted eugenol to induce peroxidation damage, produce ROS (•O<sub>2</sub><sup>-</sup>, •OH and <sup>1</sup>O<sub>2</sub>), achieve synergistic antibacterial effects, and had better rain erosion resistance and foliar retention rate based on pectin wettability and adhesion. Eu@DMSNs/Pec-FITC showed demonstrated efficient transport characteristics in tomato roots, stems and leaves, which enhanced the control effect on tomato bacterial wilt. In addition, Eu@DMSNs/Pec exert minimal influence on tomato seed germination and root growth, and have low toxicity to non-target organisms such as earthworms. Therefore, Eu@DMSNs/Pec environment-responsive nano-controlled release nanocarrier can effectively achieve accurate biocide release and reduce biocide dosage.</p><p><strong>Conclusion: </strong>This work not only provides a pectin-modified DMSNs-based eugenol nanoscale biocide delivery system in response to specific environmental conditions of R. solanacearum infection but also elucidates the eugenol biocide loading, selective release ability and antibacterial mechanism of the system.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"191"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03239-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Environmentally responsive nanoscale biocide delivery system enhances smart, regulated, and synergistic biocide application with precise biocide release. In this study, pectin-modified dendritic mesoporous silica nanoparticles (DMSNs) was used as a carrier to successfully construct a microenvironment-responsive (pH, temperature and enzyme) eugenol nano-biocide delivery system for the control of Ralstonia solanacearum infection.
Results: The results showed that the specific surface area, pore size and surface activity of DMSNs significantly influence the biocide loading of eugenol, and the biocide loading capability was up to 72.50%. Eu@DMSNs/Pec had significant pH and pectinase stimulating effects, with varying release amounts under different temperature conditions. Compared with eugenol alone, Eu@DMSNs/Pec significantly enhanced the efficacy of eugenol. DMSNs assisted eugenol to induce peroxidation damage, produce ROS (•O2-, •OH and 1O2), achieve synergistic antibacterial effects, and had better rain erosion resistance and foliar retention rate based on pectin wettability and adhesion. Eu@DMSNs/Pec-FITC showed demonstrated efficient transport characteristics in tomato roots, stems and leaves, which enhanced the control effect on tomato bacterial wilt. In addition, Eu@DMSNs/Pec exert minimal influence on tomato seed germination and root growth, and have low toxicity to non-target organisms such as earthworms. Therefore, Eu@DMSNs/Pec environment-responsive nano-controlled release nanocarrier can effectively achieve accurate biocide release and reduce biocide dosage.
Conclusion: This work not only provides a pectin-modified DMSNs-based eugenol nanoscale biocide delivery system in response to specific environmental conditions of R. solanacearum infection but also elucidates the eugenol biocide loading, selective release ability and antibacterial mechanism of the system.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.