Extracellular vesicle-mediated bidirectional communication between the liver and other organs: mechanistic exploration and prospects for clinical applications.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wenhui Mo, Yunke Peng, Yanyi Zheng, Shenglan Zhao, Liling Deng, Xiaoli Fan
{"title":"Extracellular vesicle-mediated bidirectional communication between the liver and other organs: mechanistic exploration and prospects for clinical applications.","authors":"Wenhui Mo, Yunke Peng, Yanyi Zheng, Shenglan Zhao, Liling Deng, Xiaoli Fan","doi":"10.1186/s12951-025-03259-4","DOIUrl":null,"url":null,"abstract":"<p><p>The liver, functioning as an endocrine organ, secretes a variety of substances that influence the activities of other body organs. Conversely, molecules generated by organs such as bone, the gut, and adipose tissue can also impact liver function. Accumulating evidence suggests bidirectional communication between the liver and other organs. However, research on how extracellular vesicles (EVs), which transport active molecular mediators, contribute to this interorgan communication is still in its nascent stages. EVs are capable of transporting functional molecules, including lipids, nucleic acids, and proteins, thereby affecting recipient cells across different organs at the biological level. This review examines the role of EVs in facilitating bidirectional communication between the liver and other organs such as bone, the cardiovascular system, the gut, the pancreas, the brain, the lungs, the kidneys, and adipose tissue. It explores their potential in disease treatment and highlights the challenges in understanding EV-mediated interorgan interactions. The contribution of mediator-carrying EVs to two-way communication between the liver and other organs remains an area of ongoing investigation. Future research will provide a more comprehensive theoretical foundation to clarify the precise mechanisms governing communication between the liver and other organs, pinpoint medical targets, and expand the application of EVs within the realm of precision medicine.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"190"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03259-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The liver, functioning as an endocrine organ, secretes a variety of substances that influence the activities of other body organs. Conversely, molecules generated by organs such as bone, the gut, and adipose tissue can also impact liver function. Accumulating evidence suggests bidirectional communication between the liver and other organs. However, research on how extracellular vesicles (EVs), which transport active molecular mediators, contribute to this interorgan communication is still in its nascent stages. EVs are capable of transporting functional molecules, including lipids, nucleic acids, and proteins, thereby affecting recipient cells across different organs at the biological level. This review examines the role of EVs in facilitating bidirectional communication between the liver and other organs such as bone, the cardiovascular system, the gut, the pancreas, the brain, the lungs, the kidneys, and adipose tissue. It explores their potential in disease treatment and highlights the challenges in understanding EV-mediated interorgan interactions. The contribution of mediator-carrying EVs to two-way communication between the liver and other organs remains an area of ongoing investigation. Future research will provide a more comprehensive theoretical foundation to clarify the precise mechanisms governing communication between the liver and other organs, pinpoint medical targets, and expand the application of EVs within the realm of precision medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信