Mostafa S Eraky, Sara S Elsherif, Moustafa M S Sanad
{"title":"Recent Trends in Upconversion Luminescent Inorganic Materials and Nanomaterials for Enhanced Photovoltaic Solar Cell and Biological Applications.","authors":"Mostafa S Eraky, Sara S Elsherif, Moustafa M S Sanad","doi":"10.1007/s10895-025-04198-x","DOIUrl":null,"url":null,"abstract":"<p><p>Upconversion (UC) luminescent materials have emerged as captivating contenders in revolutionizing both photovoltaic (PV) solar cell efficiency and biological capabilities. Their unique ability to convert low-energy infrared light into high-energy visible or ultraviolet (UV) photons unlocks untapped resources in the solar spectrum and allows for deeper tissue penetration in biological imaging. By bridging the gap between recent advancements and remaining hurdles, we aim to inspire further research and accelerate the translation of these materials into practical and impactful applications for both energy and healthcare. This review delves into the recent trends propelling these materials forward. We explore advancements in UC efficiency through optimized material design, novel synthesis routes, and synergistic integration with existing technologies. In the domain of PVs, we shed light on strategies utilizing UC to address spectral mismatch and enhance light harvesting, paving the way for higher power conversion efficiencies. For biological applications, we illuminate the development of biocompatible and targeted UC probes, enabling deep tissue penetration, multimodality imaging, and theranostic potential. We critically analyze the current limitations and future directions of these materials, highlighting the challenges of toxicity, quenching, and scalability that remain to be tackled. By providing a comprehensive overview of the exciting progress and persistent hurdles in UC research, this review aims to guide future explorations and catalyze the widespread adoption of these materials in sustainable energy generation and advanced medical diagnostics.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04198-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Upconversion (UC) luminescent materials have emerged as captivating contenders in revolutionizing both photovoltaic (PV) solar cell efficiency and biological capabilities. Their unique ability to convert low-energy infrared light into high-energy visible or ultraviolet (UV) photons unlocks untapped resources in the solar spectrum and allows for deeper tissue penetration in biological imaging. By bridging the gap between recent advancements and remaining hurdles, we aim to inspire further research and accelerate the translation of these materials into practical and impactful applications for both energy and healthcare. This review delves into the recent trends propelling these materials forward. We explore advancements in UC efficiency through optimized material design, novel synthesis routes, and synergistic integration with existing technologies. In the domain of PVs, we shed light on strategies utilizing UC to address spectral mismatch and enhance light harvesting, paving the way for higher power conversion efficiencies. For biological applications, we illuminate the development of biocompatible and targeted UC probes, enabling deep tissue penetration, multimodality imaging, and theranostic potential. We critically analyze the current limitations and future directions of these materials, highlighting the challenges of toxicity, quenching, and scalability that remain to be tackled. By providing a comprehensive overview of the exciting progress and persistent hurdles in UC research, this review aims to guide future explorations and catalyze the widespread adoption of these materials in sustainable energy generation and advanced medical diagnostics.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.