Competition Between Protein and DNA for Binding to Natural Sepiolite Nanofibers.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S488353
David Adame Brooks, Olivier Piétrement, Elodie Dardillac, Fidel Antonio Castro Smirnov, Pilar Aranda, Eduardo Ruiz-Hitzky, Bernard S Lopez
{"title":"Competition Between Protein and DNA for Binding to Natural Sepiolite Nanofibers.","authors":"David Adame Brooks, Olivier Piétrement, Elodie Dardillac, Fidel Antonio Castro Smirnov, Pilar Aranda, Eduardo Ruiz-Hitzky, Bernard S Lopez","doi":"10.2147/IJN.S488353","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sepiolite nanofibers, which are natural silicates belonging to the clay mineral family, could be promising potential nanocarriers for the nonviral transfer of biomolecules. The physicochemical characteristics of sepiolite make it capable of binding various types of biological molecules, including polysaccharides, lipids, proteins and viruses. Sepiolite nanofibers have also been shown to bind effectively to various types of DNA molecules through electrostatic interactions, hydrogen bonds, cationic bridges and van der Waals forces. In this study, we analyzed the adsorption of DNA and proteins to sepiolite by analyzing the competition among these biomolecules during the adsorption process.</p><p><strong>Methods: </strong>To determine the binding of sepiolite to proteins, we used BSA and a monoclonal antibody (mAb) against the CD4 membrane antigen as a model. The binding efficiency was measured by adsorption isotherms. Zeta potential measurements of the suspensions were performed using a Brookhaven NanoBrook 90 Plus PALS instrument.</p><p><strong>Results: </strong>We show here that the adsorption of proteins to sepiolite is increased in the presence of CaCl<sub>2</sub> and is charge-dependent and that sepiolite can adsorb proteins even when their net charges are equal to those on its surface. Coating of sepiolite with DNA (Sep/DNA bionanocomposites) reduces the absorption efficiency of both BSA and mAb, and this can be rescued by CaCl<sub>2</sub>. Conversely, preincubation of sepiolite with BSA or the mAb decreased the efficiency of DNA binding; Ca<sup>2+</sup> restored the binding efficiency for BSA but not for the mAb. Changes in pH result in changes in the net charge of proteins, influencing the amount of protein adsorbed.</p><p><strong>Conclusion: </strong>Although various types of protein interactions with mineral clays have been described, our results confirm that electrostatic forces are among the primary interactions in the adsorption process. These results pave the way for the use of biohybrids as a new class of nanoplatform for gene transfer with potential clinical applications.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"2711-2726"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S488353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Sepiolite nanofibers, which are natural silicates belonging to the clay mineral family, could be promising potential nanocarriers for the nonviral transfer of biomolecules. The physicochemical characteristics of sepiolite make it capable of binding various types of biological molecules, including polysaccharides, lipids, proteins and viruses. Sepiolite nanofibers have also been shown to bind effectively to various types of DNA molecules through electrostatic interactions, hydrogen bonds, cationic bridges and van der Waals forces. In this study, we analyzed the adsorption of DNA and proteins to sepiolite by analyzing the competition among these biomolecules during the adsorption process.

Methods: To determine the binding of sepiolite to proteins, we used BSA and a monoclonal antibody (mAb) against the CD4 membrane antigen as a model. The binding efficiency was measured by adsorption isotherms. Zeta potential measurements of the suspensions were performed using a Brookhaven NanoBrook 90 Plus PALS instrument.

Results: We show here that the adsorption of proteins to sepiolite is increased in the presence of CaCl2 and is charge-dependent and that sepiolite can adsorb proteins even when their net charges are equal to those on its surface. Coating of sepiolite with DNA (Sep/DNA bionanocomposites) reduces the absorption efficiency of both BSA and mAb, and this can be rescued by CaCl2. Conversely, preincubation of sepiolite with BSA or the mAb decreased the efficiency of DNA binding; Ca2+ restored the binding efficiency for BSA but not for the mAb. Changes in pH result in changes in the net charge of proteins, influencing the amount of protein adsorbed.

Conclusion: Although various types of protein interactions with mineral clays have been described, our results confirm that electrostatic forces are among the primary interactions in the adsorption process. These results pave the way for the use of biohybrids as a new class of nanoplatform for gene transfer with potential clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信