{"title":"Original Antigenic Sin in CD4+ T Cells.","authors":"Mingran Zhang, Junling Ma, Meili Li","doi":"10.1111/imm.13916","DOIUrl":null,"url":null,"abstract":"<p><p>Original antigenic sin (OAS) describes the phenomenon in which prior exposure to an antigen weakens the adaptive antibody response to a subsequent heterologous infection. This phenomenon can diminish the effectiveness of immunity acquired through vaccination or previous infections. We demonstrate that OAS arises because CD4+ T cell proliferation and regulation signals are antigen-nonspecific. Rapidly responding memory CD4+ T cells trigger regulatory T cell (Tregs) responses, which prematurely suppress the naïve CD4+ T cell response, leading to a similar OAS effect in CD4+ T cells. This mechanism is illustrated through a mathematical model incorporating naïve and memory CD4+ T cell proliferation, interleukin-2 (IL-2), and Tregs. The model, calibrated with experimental data, employs numerical simulations to analyse how CD4+ T cell responses vary with the degree of cross-reactivity between memory CD4+ T cells and the antigen associated with the secondary infection. The findings indicate that the immune response is weakest at an intermediate level of cross-reactivity, a key characteristic of OAS. This mechanism may also explain OAS in antibody responses.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13916","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Original antigenic sin (OAS) describes the phenomenon in which prior exposure to an antigen weakens the adaptive antibody response to a subsequent heterologous infection. This phenomenon can diminish the effectiveness of immunity acquired through vaccination or previous infections. We demonstrate that OAS arises because CD4+ T cell proliferation and regulation signals are antigen-nonspecific. Rapidly responding memory CD4+ T cells trigger regulatory T cell (Tregs) responses, which prematurely suppress the naïve CD4+ T cell response, leading to a similar OAS effect in CD4+ T cells. This mechanism is illustrated through a mathematical model incorporating naïve and memory CD4+ T cell proliferation, interleukin-2 (IL-2), and Tregs. The model, calibrated with experimental data, employs numerical simulations to analyse how CD4+ T cell responses vary with the degree of cross-reactivity between memory CD4+ T cells and the antigen associated with the secondary infection. The findings indicate that the immune response is weakest at an intermediate level of cross-reactivity, a key characteristic of OAS. This mechanism may also explain OAS in antibody responses.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.