PML Regulated HIF1AN Ubiquitination and Activated PI3K/AKT Pathway to Promote Bone Marrow Mesenchymal Stem Cells Osteogenic Differentiation.

IF 2.5 4区 医学 Q3 CELL & TISSUE ENGINEERING
International journal of stem cells Pub Date : 2025-05-30 Epub Date: 2025-03-10 DOI:10.15283/ijsc24110
Xian-Pei Zhou, Qi-Wei Li, Zi-Zhen Shu, Yang Liu
{"title":"PML Regulated HIF1AN Ubiquitination and Activated PI3K/AKT Pathway to Promote Bone Marrow Mesenchymal Stem Cells Osteogenic Differentiation.","authors":"Xian-Pei Zhou, Qi-Wei Li, Zi-Zhen Shu, Yang Liu","doi":"10.15283/ijsc24110","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis (OP) is a metabolic disease caused by osteogenesis and bone resorption disorders. Promyelocytic leukemia protein (PML) was a vital regulator of cellular functions. However, the function of PML in OP remains unknown. Our research aimed to illustrate the molecular mechanism of PML in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. The BMSCs were identified by using flow cytometry analysis. The osteoblast differentiation ability of BMSCs was assessed through using alkaline phosphatase and Alizarin red S stainings. The relationship between hypoxia-inducible factor-1<i>α</i> (HIF1<i>α</i>) and superoxide dismutase 3 (SOD3) were confirmed by using chromatin immunoprecipitation and dual-luciferase reporter assays. The binding association between PML and hypoxia-inducible factor 1<i>α</i> inhibitor (HIF1AN) proteins was verified by using co-immunoprecipitation assay and immunofluorescence staining. Western blot was used for protein detection. PML was up-regulated in osteogenic differentiation of BMSCs. Functionally, PML negatively regulated HIF1AN expression by enhancing HIF1AN ubiquitination degradation. PML knockdown or HIF1AN up-regulation suppressed the osteogenic differentiation of BMSCs. Furthermore, HIF1<i>α</i> directly bound to the SOD3 promoter region. PML or SOD3 overexpression remarkably promoted the BMSCs osteoblast differentiation under osteogenic medium, which was reversed by LY294002. PML acts as a significant regulator in the BMSCs osteogenic differentiation by regulating the HIF1AN/HIF1<i>α</i>/SOD3 axis and phosphatidylinositol 3 kinase/protein kinase B pathway.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"146-157"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc24110","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis (OP) is a metabolic disease caused by osteogenesis and bone resorption disorders. Promyelocytic leukemia protein (PML) was a vital regulator of cellular functions. However, the function of PML in OP remains unknown. Our research aimed to illustrate the molecular mechanism of PML in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. The BMSCs were identified by using flow cytometry analysis. The osteoblast differentiation ability of BMSCs was assessed through using alkaline phosphatase and Alizarin red S stainings. The relationship between hypoxia-inducible factor-1α (HIF1α) and superoxide dismutase 3 (SOD3) were confirmed by using chromatin immunoprecipitation and dual-luciferase reporter assays. The binding association between PML and hypoxia-inducible factor 1α inhibitor (HIF1AN) proteins was verified by using co-immunoprecipitation assay and immunofluorescence staining. Western blot was used for protein detection. PML was up-regulated in osteogenic differentiation of BMSCs. Functionally, PML negatively regulated HIF1AN expression by enhancing HIF1AN ubiquitination degradation. PML knockdown or HIF1AN up-regulation suppressed the osteogenic differentiation of BMSCs. Furthermore, HIF1α directly bound to the SOD3 promoter region. PML or SOD3 overexpression remarkably promoted the BMSCs osteoblast differentiation under osteogenic medium, which was reversed by LY294002. PML acts as a significant regulator in the BMSCs osteogenic differentiation by regulating the HIF1AN/HIF1α/SOD3 axis and phosphatidylinositol 3 kinase/protein kinase B pathway.

PML调节HIF1AN泛素化,激活PI3K/AKT通路促进骨髓间充质干细胞成骨分化。
骨质疏松症(Osteoporosis, OP)是一种由成骨和骨吸收障碍引起的代谢性疾病。早幼粒细胞白血病蛋白(PML)是细胞功能的重要调节因子。然而,PML在OP中的作用尚不清楚。本研究旨在阐明PML在骨髓间充质干细胞(BMSCs)成骨分化中的分子机制。流式细胞术鉴定骨髓间充质干细胞。碱性磷酸酶法和茜素红S染色法检测骨髓间充质干细胞成骨分化能力。采用染色质免疫沉淀法和双荧光素酶报告基因法证实了缺氧诱导因子-1α (HIF1α)与超氧化物歧化酶3 (SOD3)之间的关系。采用共免疫沉淀法和免疫荧光染色验证PML与缺氧诱导因子1α抑制剂(HIF1AN)蛋白的结合关系。Western blot法检测蛋白。PML在骨髓间充质干细胞成骨分化中表达上调。功能上,PML通过增强HIF1AN泛素化降解来负性调节HIF1AN的表达。PML下调或HIF1AN上调抑制骨髓间充质干细胞成骨分化。此外,HIF1α直接结合到SOD3启动子区域。PML或SOD3过表达可显著促进成骨培养基下骨髓间充质干细胞的成骨分化,LY294002可逆转这一作用。PML通过调控HIF1AN/HIF1α/SOD3轴和磷脂酰肌醇3激酶/蛋白激酶B通路,在BMSCs成骨分化中起重要调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of stem cells
International journal of stem cells Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.10
自引率
4.30%
发文量
38
期刊介绍: International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信