Mammalian Blastema: Possibility and Potentials.

IF 2.5 4区 医学 Q3 CELL & TISSUE ENGINEERING
Juhyeon Nam, Byungkuk Min, Areum Baek, Sang-Yun Lee, Jeongmin Ha, Min Ji Cho, Janghwan Kim
{"title":"Mammalian Blastema: Possibility and Potentials.","authors":"Juhyeon Nam, Byungkuk Min, Areum Baek, Sang-Yun Lee, Jeongmin Ha, Min Ji Cho, Janghwan Kim","doi":"10.15283/ijsc24121","DOIUrl":null,"url":null,"abstract":"<p><p>Regeneration is a process that restores the structure and function of injured tissues or organs. Regenerative capacities vary significantly across species, with amphibians and fish demonstrating a high regenerative capacity even after severe injuries. This capacity is largely attributed to the formation of a blastema, a mass of multipotent cells reprogrammed from differentiated cells at the injury site. In contrast, mammals exhibit limited regenerative capacities, with blastema-like cells forming only in specific contexts, such as antler or digit tip regeneration. An interesting aspect of blastema formation in highly regenerative organisms is the temporary expression of pluripotency factors as known as the Yamanaka factors (YFs), which is a key requirement for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). While iPSCs hold pros and cons, direct or partial reprogramming with YF has been proposed as a safer alternative. Since blastema formation and partial reprogramming are similar in terms of YF expressions, we found blastema-like cells in mammalian reprogramming with YF. This review outlines the characteristics of blastema across various organisms, emphasizing interspecies differences. We also explore studies on partial reprogramming and the possibility of inducing blastema-like cells via the temporary expression of YF in mammals.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc24121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Regeneration is a process that restores the structure and function of injured tissues or organs. Regenerative capacities vary significantly across species, with amphibians and fish demonstrating a high regenerative capacity even after severe injuries. This capacity is largely attributed to the formation of a blastema, a mass of multipotent cells reprogrammed from differentiated cells at the injury site. In contrast, mammals exhibit limited regenerative capacities, with blastema-like cells forming only in specific contexts, such as antler or digit tip regeneration. An interesting aspect of blastema formation in highly regenerative organisms is the temporary expression of pluripotency factors as known as the Yamanaka factors (YFs), which is a key requirement for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). While iPSCs hold pros and cons, direct or partial reprogramming with YF has been proposed as a safer alternative. Since blastema formation and partial reprogramming are similar in terms of YF expressions, we found blastema-like cells in mammalian reprogramming with YF. This review outlines the characteristics of blastema across various organisms, emphasizing interspecies differences. We also explore studies on partial reprogramming and the possibility of inducing blastema-like cells via the temporary expression of YF in mammals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of stem cells
International journal of stem cells Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.10
自引率
4.30%
发文量
38
期刊介绍: International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信