Rikke Marion-Knudsen, Lucas Alexander Lindberg, Thomas Jespersen, Arnela Saljic
{"title":"Quantitative histologic assessment of atrial fibrillation-associated fibrosis in animal models: A systematic review.","authors":"Rikke Marion-Knudsen, Lucas Alexander Lindberg, Thomas Jespersen, Arnela Saljic","doi":"10.1016/j.hrthm.2025.03.1880","DOIUrl":null,"url":null,"abstract":"<p><p>Atrial fibrillation (AF) is the most common sustained arrhythmia, and cardiac fibrosis is a major component in driving its progressive nature. Quantitative histologic assessment of fibrosis in animal models is crucial for understanding AF, but current published studies present various methodologies that limit comparison. This systematic review examines 195 AF studies across multiple animal models (mice, rats, goats, dogs, pigs, and horses) to summarize (1) quantified fibrosis results and (2) methodologies for histologic fibrosis assessment; and (3) evaluate antifibrotic therapies used in these studies. The fibrosis quantified across the studies ranged from 0.34%-60.2% depending on the animal, intervention model, and quantification method. The findings underscore the need for a standardized fibrosis quantification protocol in AF research, enabling comparison across studies and offering greater insight into potential pharmacologic interventions.</p>","PeriodicalId":12886,"journal":{"name":"Heart rhythm","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart rhythm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.hrthm.2025.03.1880","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, and cardiac fibrosis is a major component in driving its progressive nature. Quantitative histologic assessment of fibrosis in animal models is crucial for understanding AF, but current published studies present various methodologies that limit comparison. This systematic review examines 195 AF studies across multiple animal models (mice, rats, goats, dogs, pigs, and horses) to summarize (1) quantified fibrosis results and (2) methodologies for histologic fibrosis assessment; and (3) evaluate antifibrotic therapies used in these studies. The fibrosis quantified across the studies ranged from 0.34%-60.2% depending on the animal, intervention model, and quantification method. The findings underscore the need for a standardized fibrosis quantification protocol in AF research, enabling comparison across studies and offering greater insight into potential pharmacologic interventions.
期刊介绍:
HeartRhythm, the official Journal of the Heart Rhythm Society and the Cardiac Electrophysiology Society, is a unique journal for fundamental discovery and clinical applicability.
HeartRhythm integrates the entire cardiac electrophysiology (EP) community from basic and clinical academic researchers, private practitioners, engineers, allied professionals, industry, and trainees, all of whom are vital and interdependent members of our EP community.
The Heart Rhythm Society is the international leader in science, education, and advocacy for cardiac arrhythmia professionals and patients, and the primary information resource on heart rhythm disorders. Its mission is to improve the care of patients by promoting research, education, and optimal health care policies and standards.