{"title":"Lower limb biomechanical differences between forehand and backhand forward lunges in amateur female badminton players.","authors":"Zhonghao Xie, Jing Pan, Xingyu Wu, Huiting Liang, Bosi Chen, Dongping Tan, Meng Wu, Zhiguan Huang","doi":"10.3389/fbioe.2025.1558918","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Forehand and backhand forward lunges are frequently performed in badminton, placing significant demands on the lower limbs. The purpose of this study was to examine the differences in lower limb biomechanics between these two lunge types in female amateur players.</p><p><strong>Methods: </strong>This study involved 17 female amateur badminton players performing forehand and backhand forward lunges. Lower limb kinematics and dynamics were recorded using an eight-camera Vicon motion capture system and two AMTI force plates. Variables such as joint angle, range of motion, stiffness, and ground reaction forces measured during the stance phase were analyzed using paired t-tests. To account for the one-dimensional nature of joint angles, moments, and ground reaction forces, the analysis was performed using paired sample t-tests in Statistical Parametric Mapping 1D.</p><p><strong>Results: </strong>The forehand lunge exhibited a smaller hip flexion angle, greater hip internal rotation angle, and increased hip stiffness compared to the backhand lunge. The backhand lunge, in contrast, demonstrated a higher ankle varus angle and greater transverse plane hip range of motion. SPM1D analysis revealed significant differences in both the early (0%-10%) and late (80%-100%) phases of the stance phase. In the early phase, the backhand lunge showed a larger internal rotation moment at the hip, an external rotation moment at the knee, and a smaller knee extension moment. In the late phase, the forehand lunge revealed greater internal rotation moments at the hip, external rotation moments at the knee, ankle valgus moments, and smaller knee flexion moments.</p><p><strong>Conclusion: </strong>The backhand lunge requires greater hip internal rotation than the forehand lunge. Additionally, it is associated with higher ankle varus angles, which may increase the risk of ankle injuries. In contrast, the forehand lunge demonstrates greater hip stiffness, potentially reflecting an adaptation of the lower limb to varying directional demands. These findings emphasize the importance of incorporating targeted ankle and hip training exercises into conditioning programs.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1558918"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1558918","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Forehand and backhand forward lunges are frequently performed in badminton, placing significant demands on the lower limbs. The purpose of this study was to examine the differences in lower limb biomechanics between these two lunge types in female amateur players.
Methods: This study involved 17 female amateur badminton players performing forehand and backhand forward lunges. Lower limb kinematics and dynamics were recorded using an eight-camera Vicon motion capture system and two AMTI force plates. Variables such as joint angle, range of motion, stiffness, and ground reaction forces measured during the stance phase were analyzed using paired t-tests. To account for the one-dimensional nature of joint angles, moments, and ground reaction forces, the analysis was performed using paired sample t-tests in Statistical Parametric Mapping 1D.
Results: The forehand lunge exhibited a smaller hip flexion angle, greater hip internal rotation angle, and increased hip stiffness compared to the backhand lunge. The backhand lunge, in contrast, demonstrated a higher ankle varus angle and greater transverse plane hip range of motion. SPM1D analysis revealed significant differences in both the early (0%-10%) and late (80%-100%) phases of the stance phase. In the early phase, the backhand lunge showed a larger internal rotation moment at the hip, an external rotation moment at the knee, and a smaller knee extension moment. In the late phase, the forehand lunge revealed greater internal rotation moments at the hip, external rotation moments at the knee, ankle valgus moments, and smaller knee flexion moments.
Conclusion: The backhand lunge requires greater hip internal rotation than the forehand lunge. Additionally, it is associated with higher ankle varus angles, which may increase the risk of ankle injuries. In contrast, the forehand lunge demonstrates greater hip stiffness, potentially reflecting an adaptation of the lower limb to varying directional demands. These findings emphasize the importance of incorporating targeted ankle and hip training exercises into conditioning programs.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.