{"title":"<sup>1</sup>H-NMR-Based Biochemometric Strategy to Identify Transient Receptor Potential Vanilloid 1-Stimulating Compounds from Alpinia officinarum Rhizome.","authors":"Tomohisa Kanai, Tatsuya Shirahata, Shunsuke Nakamori, Rin Sato, Akito Hayashi, Yota Koizumi, Kenichiro Nagai, Susumu Ohkawara, Takayuki Hoshino, Toshiko Tanaka-Kagawa, Hideto Jinno, Yoshinori Kobayashi","doi":"10.1248/cpb.c24-00707","DOIUrl":null,"url":null,"abstract":"<p><p>This study established a <sup>1</sup>H-NMR-based biochemometric approach for the isolation of biologically active compounds from complex extracts. In both pharmacognosy and natural product chemistry, reliably isolating bioactive compounds typically necessitates repeating time-consuming and laborious isolation and purification steps, presenting a bottleneck in many studies. We applied biochemometric methods to accurately estimate active compounds, thus minimizing the number of assays and isolation steps. The rhizomes of Alpinia officinarum Hance (Zingiberaceae) have been continuously prescribed in traditional Japanese medicine as stomachics and analgesics, despite a limited understanding of the mechanisms underlying these effects. Additionally, transient receptor potential vanilloid subtype 1 (TRPV1) plays a role in modulating nociception, respiratory defense responses, and gastrointestinal protection. Accordingly, <sup>1</sup>H-NMR-based biochemometry was employed to search for TRPV1-active components in A. officinarum rhizome extracts by combining TRPV1 activity intensity with <sup>1</sup>H-NMR data. However, initially, the active component could not be identified because the principal component analysis loading plot primarily displayed only buckets of primary metabolites. Consequently, we applied orthogonal partial least squares to the <sup>1</sup>H-NMR spectra, which allowed us to identify specific spectral bins at 1.66 ppm (aliphatic) and 7.02, 6.98, 6.82, and 6.74-6.58 ppm (aromatic), correlating with TRPV1-stimulating activity. Based on this prediction, diarylheptanoids were swiftly identified, and their potential to activate TRPV1 was confirmed by administering the identified compounds to TRPV1-expressing cells. These findings highlight the potential of chemometric analysis using <sup>1</sup>H-NMR spectroscopy for identifying the chemical classes responsible for the bioactive properties of complex crude drug extracts.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 3","pages":"195-204"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00707","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study established a 1H-NMR-based biochemometric approach for the isolation of biologically active compounds from complex extracts. In both pharmacognosy and natural product chemistry, reliably isolating bioactive compounds typically necessitates repeating time-consuming and laborious isolation and purification steps, presenting a bottleneck in many studies. We applied biochemometric methods to accurately estimate active compounds, thus minimizing the number of assays and isolation steps. The rhizomes of Alpinia officinarum Hance (Zingiberaceae) have been continuously prescribed in traditional Japanese medicine as stomachics and analgesics, despite a limited understanding of the mechanisms underlying these effects. Additionally, transient receptor potential vanilloid subtype 1 (TRPV1) plays a role in modulating nociception, respiratory defense responses, and gastrointestinal protection. Accordingly, 1H-NMR-based biochemometry was employed to search for TRPV1-active components in A. officinarum rhizome extracts by combining TRPV1 activity intensity with 1H-NMR data. However, initially, the active component could not be identified because the principal component analysis loading plot primarily displayed only buckets of primary metabolites. Consequently, we applied orthogonal partial least squares to the 1H-NMR spectra, which allowed us to identify specific spectral bins at 1.66 ppm (aliphatic) and 7.02, 6.98, 6.82, and 6.74-6.58 ppm (aromatic), correlating with TRPV1-stimulating activity. Based on this prediction, diarylheptanoids were swiftly identified, and their potential to activate TRPV1 was confirmed by administering the identified compounds to TRPV1-expressing cells. These findings highlight the potential of chemometric analysis using 1H-NMR spectroscopy for identifying the chemical classes responsible for the bioactive properties of complex crude drug extracts.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.